Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Вычислительные алгоритмы прикладных задач, описываемых системами дифференциальных уравнений с частными производными второго порядка

Юлдашев Т.

Исомиддинов А.И.

Проблемы вычислительной и прикладной математики

  • № 1(13) 2018

Страницы: 

77

 – 

85

Язык: русский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

В работе приведены вычислительные алгоритмы прикладных задач описывающих системой дифференциальных уравнений с частными производными второго порядка. В качества моделируемого объекта рассмотрены шпиндели уборочного аппарата при воздействии пространственно – динамическом нагружении. На основе вариационного принципа Остроградского — Гамильтона выведены уравнения колебаний стержней типа шпинделя при пространственном нагружении. Полученные уравнения колебаний описываются системами дифференциальных уравнений в частных производных второго порядка с естественными граничными и начальными условиями. Разработанная математическая модель исследуемого объекта аппроксимируется на основе метода конечных разностей и описываются системами алгебраических уравнений с учетом граничных и начальных условий. На основе разработанного вычислительного алгоритма решена тестовая задача и определено напряженно-деформированное состояние шпинделя при воздействии динамических нагрузок. Полученные численные результаты приведены в виде таблиц и графиков.

In article the computing algorithms of applied tasks describing by system of the differential equations with private by derivative of the second order are given. In qualities of simulated object are considered of spindles of the harvest device at influence spatially — dynamic loadings. On the basis of a variation principle of Ostrogradsky-Hamilton’s are deduced of the equations fluctuation of cores such as a spindle at spatial loadings. Received of the equations fluctuation is described by systems by the differential equations by private products of the second order with natural boundary and entry conditions. The developed mathematical model of researched object is approximating on the basis of a method of final differences and described by systems of the algebraic equations in view of boundary and entry conditions. On the basis of the developed computing algorithm are decided a test task and the condition of a spindle are determined is intense — deformed at influence dynamic loadings. The received numerical results are given as the tables and graphics.

Maqolada ikkinchi tartibli xususiy xosilali differensial tenglamalar sistemasi orqali ifodalanuvchi amaliy masalalarni hisoblash algorotmlari keltirilgan. Modellashtirish ob’ekti sifatida fazoviy dinamik yuklanishlar ta’siridagi teruvchi apparat shpindellari qaralgan. Ostrogradskiy-Gamilton variatsion tamoyili asosida shpindel tipidagi sterjenlarning fazoviy yuklanishlardagi tebranishlarining tenglamalari keltirib chiqarilgan. Olingan tebranish tenglamalari tabiiy chegaraviy va boshlang’ich shartli ikkinchi tartibli xususiy xosilali differensial tenglamalar sistemasi ko’rinishida ifodalangan. Tadqiqiot obyekti uchun ishlab chiqilgan matematik model chekli ayirmalar usuli asosida approksimatsiyalanib, chegaraviy va boshlang’ich shartlarni inobatga olgan holda algebraik tenglamalar sistemasi ko’rinishida ifodalangan. Ishlab chiqilgan hisoblash algoritmlari asosida test masala yechilib, fazoviy dinamik yuklanishlar ta’siridagi shpindelning kuchlanganlik-deformatsiyalanganlik holati aniqlangan. Olingan sonli natijalar jadval va grafik ko’rinishida keltirilgan.

Список использованных источников

  1. Сабликов М.В. Хлопкоуборочные машины. – М.: Агропромиздат, 1985. – 152 с.
  2. Иногамов К.М. Исследование геометрии шпинделей хлопкоуборочных машин. Автореферат канд. дисс. – Т.: 1969. – 20 с.
  3. Глущенко А.Д. Динамика механизмов привода шпинделей уборочных аппаратов хлопкоуборочных машин – Т.: Фан, 1985. – 154 с.
  4. Глущенко А.Д., Ташболтаев М.Т. Динамика узлов вращения уборочных аппаратов хлопкоуборочных машин. – Т.: Фан, 1990. – 138 с.
  5. Глущенко А.Д., Ризаев А.А. Моделирование динамических взаимодействий долек хлопка и шпинделей в хлопкоуборочных аппаратах. – Т.: Фан, 1995. – 131 с.
  6. Туранов Х.Т. Колебания и нагруженность составных валов барабанного типа некоторых хлопковых машин. – Т.: Фан, 1982. – 168 с.
  7. Коростылев В.А. Автореф. дисс. на соиск. уч. степ. к.т.н., Оптимизация захватывающего элемента составного шпинделя хлопкоуборочной машины по критерию минимального веса с учетом динамических характеристик рабочего процесса. – Т.: 1983. – 20 с.
  8. Юлдашев Т., Исомиддинов А.И. Вывод дифференциальных уравнений колебания стержней типа шпинделя уборочного аппарата при пространственном нагружении. // Журнал. Проблемы вычислительной и прикладной математики. – 2017. – №1 (7). – С. 74-85.
  9. Самарский А.А. Введение в теорию разностных схем. – М.: Наука, 1971. – 532 с.
  10. Годунов С.К., Рябенький В.С. Разностные схемы (Введение в теорию). – М.: Наука, 1977. – 440 с.
  11. Самарский А.А., Гулин А.В. Численные методы. – М.: Наука, 1989. – 432 с.
  12. Никитин Н.Н. Курс теоретической механики: Учеб. для машиностроит. и приборостроит. спец вузов. – 5-е изд. перераб. и доп. – М.: Высш. шк., 1990. – 607 с.

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS