Трубадаги суюкликлар харакатини математик моделлаштириш
- № 2(14) 2018
Страницы:
36
–
46
Язык: узбекский
Аннотация
Мақолада трубада ҳаракатланаётган қисилмайдиган ёпишқоқ суюқлик ҳаракатини математик моделлаштиришга оид маълумотлар келтирилган. Тадқиқотда трубада, каналларда ва чегаравий қатламда ҳаракатланаётган суюқликнинг ламинар ва
турубулент режимда бўлиши, ҳамда ушбу режимларнинг пайдо бўлишининг физик
моҳияти таҳлил этилган. Бутун узунлиги бўйича ўзгармас диаметрли трубадаги суюқлик оқимини қарайлик, оқим тезлиги ёпишқоқлик эвазига труба деворида нолга
тенг бўлади, труба ўртасида эса максимал қийматга эришади. Суюқлик ичига жойлаштирилган характерли узунлик ҳамда радиусга эга бўлган, ўқи труба ўқи билан
мос тушадиган силиндр орқали оқиб ўтадиган суюқлик ҳаракати ўрганилган. Ушбу цилиндрдаги оқимнинг максимал тезлигини, трубанинг кўндаланг кесими орқали оқиб ўтадиган суюқлик ҳажмини, оқим узунлиги бўйича трубанинг ишқаланиш
қаршилик кўрсатиш коэффициентини ҳамда уринма кучланишнинг максимал қийматини ҳисоблаш формуласи чиқарилган. Ишқаланишга қаршилик кўрсатиш коэффициентини ҳисоблашнинг эмпирик ва ярим эмпирик формулаларини таққослаш
натижалари келтирилган.
The article contains information on mathematical modeling of the motion of an incompressible viscous fluid in a pipe. Laminar and turbulent regimes of fluid motion are indicated in the research, and the physical meaning of the appearance of these regimes is analyzed. Consider a straight circular tube with a constant diameter over its entire length. The velocity of flow on the walls of the pipe due to adhesion is zero, in the middle of the pipe it has the greatest value. We consider a cylinder with a characteristic length and a characteristic radius inside a fluid whose axis coincides with the axis of the tube and the flow of liquid through the cylinder is studied. Calculation formulas are derived for calculating the maximum flow velocity in the cylinder, the volume of liquid passing through the cross section of the pipe, the coefficient of resistance to friction in the pipe along the length of the flow, and the maximum value of the tangential stress. The results of a comparison of empirical and semi-empirical formulas for calculating the coefficient of resistance to friction are presented.
The article contains information on mathematical modeling of the motion of an incompressible viscous fluid in a pipe. Laminar and turbulent regimes of fluid motion are indicated in the research, and the physical meaning of the appearance of these regimes is analyzed. Consider a straight circular tube with a constant diameter over its entire length. The velocity of flow on the walls of the pipe due to adhesion is zero, in the middle of the pipe it has the greatest value. We consider a cylinder with a characteristic length and a characteristic radius inside a fluid whose axis coincides with the axis of the tube and the flow of liquid through the cylinder is studied. Calculation formulas are derived for calculating the maximum flow velocity in the cylinder, the volume of liquid passing through the cross section of the pipe, the coefficient of resistance to friction in the pipe along the length of the flow, and the maximum value of the tangential stress. The results of a comparison of empirical and semi-empirical formulas for calculating the coefficient of resistance to friction are presented.