Схемы повышенной точности для нестационарных задач конвекции – диффузии
- № 2(20) 2019
Страницы:
5
–
13
Язык: русский
Аннотация
В настоящей работе предложены и исследованы разностные схемы высокого порядка точности по пространству и по времени решения краевых задач для уравнения конвекции–диффузии. При пространственной аппроксимации задачи рассматривались схемы различного порядка точности: метода конечных разностей второго порядка точности и метода конечных элементов третьего порядка точности. Для абстрактной задачи Коши полученной при пространственной аппроксимации построены разностные схемы метода конечных элементов четвертого порядка точности. Получены соответствующие условия устойчивости и априорные оценки решения построенных разностных схем. Доказаны соответствующие оценки точности построенных схем в классе гладких решений.
In the present paper, we proposed and investigated difference schemes of high order of accuracy on space and time for solving boundary value problems for the convectiondiffusion equation. With the spatial approximation of the problem, schemes of a different order of accuracy were considered: the method of finite differences of second order of accuracy and the method of finite elements of the third order of accuracy. For the abstract Cauchy problem obtained with spatial approximation, finite-difference schemes of finite element method of the fourth order of accuracy are constructed. The corresponding stability conditions and a priori estimates of the solution of the constructed difference schemes are obtained. The corresponding estimates of the accuracy of the constructed schemes in the class of smooth solutions are proved.
In the present paper, we proposed and investigated difference schemes of high order of accuracy on space and time for solving boundary value problems for the convectiondiffusion equation. With the spatial approximation of the problem, schemes of a different order of accuracy were considered: the method of finite differences of second order of accuracy and the method of finite elements of the third order of accuracy. For the abstract Cauchy problem obtained with spatial approximation, finite-difference schemes of finite element method of the fourth order of accuracy are constructed. The corresponding stability conditions and a priori estimates of the solution of the constructed difference schemes are obtained. The corresponding estimates of the accuracy of the constructed schemes in the class of smooth solutions are proved.