Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Работа двухкаскадного гидравлического сервомеханизма в скользящем режиме

Игамбердиев К.А.

Аннакулова Г. К.

Проблемы вычислительной и прикладной математики

  • № 1(13) 2018

Страницы: 

11

 – 

15

Язык: русский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

В статье рассмотрено движение гидравлического сервомеханизма режима скольжения. Составлена математическая модель гидравлического следящего сервомеханизма. Решение задачи об определении движений, в гидравлическом сервомеханизме сведено к исследованию трехлистной фазовой плоскости динамической системы. Установлены условия существования скользящего режима движения системы. Полученные уравнения фазовых траекторий системы являются параболами с особой точкой в начале координат. Для исследования поведений траекторий вблизи начала координат применен критерий Ляпунова. Функция Ляпунова исследовалась в виде квадратичной формы. Установлены условия двух возможных сценариев поведения траекторий, при которых происходит смена характерных режимов работы гидравлического сервомеханизма: а) когда окрестность особой точки неустойчива; б) когда окрестность особой точки устойчива. Получены функции Ляпунова для автоколебательной системы и построены диаграммы фазовых траекторий и линии уровней функций Ляпунова системы при различных значениях параметров системы.

The article deals with the motion of a hydraulic servomechanism of the sliding mode. A mathematical model of the hydraulic servomechanism is made. The solution of the problem of determining the motions in hydraulic servomechanism is reduced to the investigation of the three-leafed phase plane of the dynamical system. The conditions for the existence of a sliding mode of motion of the system are established. The resulting equations of the phase trajectories of the system are parabolas with a singular point at the origin. To investigate the behavior of trajectories near the origin, the Lyapunov criterion is applied. The Lyapunov function was investigated in a quadratic form. The conditions of two possible scenarios for the behavior of trajectories are established under which the characteristic modes of operation of the hydraulic servomechanism change: a) when the neighborhood of a singular point is unstable; b) when the neighborhood of the singular point is stable. The Lyapunov functions for the self-oscillating system are obtained and diagrams of the phase trajectories and level lines of the Lyapunov system functions are constructed for various values of the parameters of the system.

Мaqolada sirg’aluvchi rejim hisobga olingan holdagi gidravlik yordamchi mexanizm harakati ko’rilgan. Gidravlik yordamchi mexanizmning matematik modeli tuzilgan. Tizim harakatida sirg’aluvchan rejim mavjudligi shartlari belgilangan. Gidravlik mexanizm harakatini aniqlash masalasi dinamik tizimlarda, uch qavatli fazoviy tekislikni tadqiq qilish masalasiga keltirilgan. Olingan fazoviy tenglamalarning maxsus nuqtasi koordinatalar boshlanishida joylashgan parabolalardan iborat. Koordinatalar boshlanishi yaqinida trayektoriyalarning holatlarini tadqiq etish uchun Lyapunov turg’unlik mezoni qo’llanilgan. Lyapunov funksiyasi kvadratik forma ko’rinishida izlangan. Gidravlik yordamchi mexanizm xos ishlash rejimi trayektoriyalar holatlarining mumkin bo’lgan ikki xil senariyda o’zgarishi shartlari belgilangan: a) maxsus nuqta atrofi noturg’un bo’lgan holda; b) maxsus nuqta atrofi turg’un bo’lgan holda. Avtotebranishli gidravlik tizim uchun Lyapunov funksiyalari aniqlangan. Tizim parametrlarining turli qiymatlarida fazoviy trayektoriyalar va Lyapunov funksiyalari chiziqlari sathlari diagrammalari qurilgan.

Список использованных источников

  1. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. – М.: Наука, 1985. – 224 с.
  2.  Фейгин М.И. Вынужденные колебания систем с разрывными нелинейностями. – М.: Наука, 1994, –282 с.
  3.  Цыпкин Я.З. Релейные автоматические системы. – М.: Наука, 1974. – 576 с.
  4.  Sweet J. A. Basic study of water removal at the press – Pulp and paper magazine of Canada, 1961, 62 n 7, p 367.
  5.  Хаяси Т. Нелинейные колебания в физических системах. М. Мир, 1968. – 432 с.
  6.  Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости. – М.: Наука, 1976. – 496 с.
  7.  Гелич А.Х., Леонов Г.А., Якубович В.А. Устойчивость нелинейных систем с неединственным состоянием равновесия. – М.: Наука, 1978. – 400 с.
  8.  Бромберг П.В. Матричные методы в теории релейного и импульсного регулирования. – М.: Наука, 1967.
  9.  Уткин В.И. Скользящие движения в задачах оптимизации и управления. - М.: Наука, 1981. – 367 с.
  10.  Горская Н.С. и др. Динамика нелинейных сервомеханизмов. – М.: Наука, 1959.
  11.  Аннакулова Г.К., Лебедев О.В. Динамические режимы и хаотические движения элементов приводов машин.
  12.  Аннакулова Г.К., Абдуллаева М.Г., Игамбердиев К.А. Построение функций Ляпунова для сильно нелиней- ных автоколебательных систем // Проблемы вычислительной и прикладной математики. – Ташкент. 2016, №2, - С. 71-75

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS