Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

On the linear evasion differential games of many pursuers and one evader with integral constraints

Рахманов А.Т.

Ибрагимов Г.И.

Ганиев Ф.М.

Муҳаммад ал-Хоразмий авлодлари

  • № 2 (4) 2018

Страницы: 

29

 – 

37

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

We study a linear evasion differential game of one evader from many pursuers with integral constraints on control functions of players. The terminal set is union of a finite number of subspaces. The critical case where ―rotatability‖ condition fails to hold is studied. More precisely, when projections of control sets are segments parallel to coordinate axes, effectively verifiable sufficient conditions of evasion are obtained. The evasion is sequentially implemented from each of pursuers. To construct the evasion control, the initial positions, current states and controls of pursuers are used.

Список использованных источников

  1. AzimovA.Ya. (1974). Linear evasion differential game with integral constraints on controls. Journal of Computational Mathematics and Mathematical Physics. 14(6), 1427-1436.
  2. Chikrii A.A. (1984) Method of alternating directions in nonlinear differential games of evasion. Kibernetika. No 1, pp.48–54.Мухаммад ал-Хоразмий авлодлари, № 2 (4), май 2018
  3. Gusiatnikov P.B. (1975) Escape of nonlinear objects of different types with integral constraints on the control.PMM, Vol. 39, No 1, 1975, pp. 12-23
  4. Kuchkarov A.S., Rikhsiyev B.B. (2002). The possibility of avoiding an encounter in a linear differential game of evasion. Journal of Applied Mathematics and Mechanics, 66(2), 233–237. doi:10.1016/S0021-8928(02)00028-X
  5. Mesencev A.V. (1974). Sufficient escape conditions for linear games with integral constraints. Dokl. Akad. Nauk SSSR, 218(5) 1021-1023.
  6. Mishchenko E.F. (1974). On the problem of evading the encounter in differential games.SIAM J. Control, 12(2), 300–310.
  7. Mishchenko E.F., Nikol‘skii M.S., Satimov N.Y. (1977). Evoidance encounter problem in differential games of many persons. Trudy MIAN USSR,143, 105–128.
  8. Mishchenko E.F., Satimov N.Y. (1981). On the possibility of evading encounter in differential games in a critical case. Proceedings of the Steklov Institute of Mathematics, 158, 131–134.
  9. Mishchenko E.F., Satimov N.Y. (1983)An Encounter–Evasion Problem in the Critical Case. Differential Equations, 19(2), 160–167
  10. Nikolskii M.S. (1974) On a linear escape problem. Dokl. Akad. Nauk SSSR, 218, pp. 1024-1027. (In Russian) Soviet Math. Dokl., 15 (1974), pp. 1462-1466. (In English.)
  11. Ostapenko V.V. (1978) A nonlinear escape problem. Kibernetika (Kiev), 14, pp. 106-112. (In Russian.) Cybernetics, 14 (1978), pp. 594-601. (In English.)
  12. Pontryagin L.S., Mishchenko E.F. (1971)The problem of evading the encounter in linear differential games. Differentsialnye Uravneniya. 7, pp.436-445.
  13. Pontryagin L.S. (1971). Linear evasion differential game. Proceedings of the Steklov Institute of Mathematics, 112: 30–63.
  14. Pshenichnii B.N. (1968) Linear differential games. Avtomafika and Telemekhanika. 1, 65-78.
  15. Rakhmanov A.T. (1984) On a problem of evasion from many pursuers. Dokl. Akad. UzSSR, No 8, p.3-4.
  16. Rakhmanov A.T. (1985) Sufficient conditions of positional evasion in the critical case. Izv. Akad. NaukUzSSR, Ser. Fiz.-Mat. Nauk, No.6, pp.21–26.
  17. Rakhmanov A.T. (1987) Linear evasion differential games with integral constraints in the critical case.Izv. Akad. NaukUzSSR, Ser. Fiz.-Mat.Nauk, No.1, pp.34–40.
  18. Satimov N.Yu. (1984). Possibility of Encounter Avoidance in a Critical Case. Differential Equations, 20:12 1451–1455.
  19. Satimov N.Yu., Rikhsiev B.B. (1978) Quasilinear differential games of evasion. Diferents. Uravneniya, 14(6): 1046-1052.
  20. Satimov N. Yu., Rikhsiev B. B. (2000).Methods for Solving the Evasion Problem in Mathematical Control Theory. Tashkent, Fan.
  21. Yugai L.P. (1996) A sufficient condition for course evasion. Differential Equations. 32:9, 1294–1296

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS