Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Об одной математической модели разбухания глинистого сланца

Имомназаров Б. Х.

Имомназаров Х. Х.

Хайдаров И. К.

Проблемы вычислительной и прикладной математики

  • № 3(21) 2019

Страницы: 

49

 – 

56

Язык: русский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

Предложен модифицированный вариант линейной теории пороупругости для описания разбухания сланца водным электролитом. При этом, предполагается, что сланец ведет себя как изотропная, идеальная ионная мембрана, и в этом случае разбухание зависит только от полного тензора напряжения и от химического потенциала воды в порах породы. Составлены уравнения для напряжения сланца и диффузии для воды.

A modified version of the linear theory of poroelasticity is proposed for describing the swelling slate with an aqueous electrolyte. It is assumed that slate behaves as an isotropic, ideal ionic membrane, and in this case, the swelling depends only on the full stress tensor and on the chemical potential of water in the pores of the rock.

Список использованных источников

  1. Chenevert M. E. Izmenenie slantsa putem adsorbtsii vody [Shale alteration by water adsorption]. J. Pet. Technol., v. 22, No. 9, 1141–1148 p.
  2. Bol G. M. 1986. Vliyanie razlichnykh polimerov i soley na skvazhinu i ustoychivost’ k rezaniyu v burovykh rastvorakh na vodnoy osnove. — [The effect of various polymers and salts on borehole and cutting stability in water-base shale drilling fluids]. // In Proc. IADC/SPE Drilling Conf., paper 14802. Richardson, Texas: Society of Petroleum Engineers.
  3. Simpson JP., Dearing HL., Salisbury C. K. 1989. Skvazhinnaya imitatsionnaya yacheyka pokazyvaet neozhidannye effekty gidratatsii slantsa na stenku skvazhiny. — [Downhole simulation cell shows unexpected effects of shale hydration on borehole wall] // SPE Drilling Engng, 4, 24–30 p.
  4. Salisbury D.P., Ramos G. G., Wilton B. S. 1991. Skvazhinnaya imitatsionnaya yacheyka pokazyvaet neozhidannye effekty gidratatsii slantsa na stenku skvazhiny. — [Nestabil’nost’ stvola skvazhiny s ispol’zovaniem skvazhinnoy imitatsionnoy ispytatel’noy kamery] // In Rock mechanics as a multidisciplinary science, Proc. 32nd U.S. Symp. (ed. J.-C. Roegiers), 1015–1024 p. Rotterdam: Balkema.
  5. Chenevert M. E., Osisanya S. O. 1992. Razvitie matematicheskikh modeley diffuzionnogo goreniya i transportirovki gaza po truboprovodu. — [Shale swelling at elevated temperature and pressure] In Rock Mechanics, Proc. 33rd U.S. Symp. (ed. J. R. Tiller W. R. Wawersik), 869–878 p. Rotterdam: Balkema.
  6. Bol G. M., Wong S. W., Davidson C. J., Woodland D. C. 1992. Ustoychivost’ skvazhiny v slantsakh. — [Borehole stability in shales] M.:Mir, 612 p. In Proc. Em. Petroleum Conf., paper 24975. Richardson, Texas: Society of Petroleum Engineers.
  7. Mody F. K., Hale A. H. 1993. A borehole model to couple the mechanics and chemistry of drilling fluid shale interaction. — In Proc. SPE/IADC Drilling Conf., paper 25728. Richardson, Texas: Society of Petroleum Engineers.
  8. Audibert A., Bieber M. T., Bailey L., Denis J., Hammond P. S. 1993. Rentgenovskaya tomografiya i mekhanicheskoe modelirovanie nabukhayushchikh slantsev. — [Xray tomography visualization and mechanical modelling of swelling shale] J. Petrol. Sci. Engng., v. 9, 313–329 p.
  9. Bailey L., Denis J. H., Maitland G. C. 1991 Drilling Fluids and wellbore stability - current performance and future challenges. — In Proc. E. Soc. Chem. 150th Annual Congr. Chemicals in the Oil Industry Symposium (ed. P. H. Ogden), ESC special publication, no. 97, 53–70 p.
  10. Biot M. A. 1941. General theory of three-dimensional consolidation. — J. appl. Phys., Vol. 12, No. 2, 155–164 p.
  11. Dorovsky V. H. 1989. Kontinual’naya teoriya fil’tratsii. — [Kontinual’naya teoriya fil’tratsii] Geology and geophysics. 39–45 p.
  12. Rice J. R., Cleary M.P. 1976. Some basic stress diffusion solutions for fluidsaturated elastic porous media with compressible constituents — Rev. Geophys. Space Phys., v. 14, 227–241 p.
  13. Detournay E., Cheng A. H. 1988. Poroelastic response of a borehole in a nonhydrostatic stress field. — Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 25, No. 3, 171–182 p.
  14. Sherwood J. D. 1993. Biot poroelasticity of a chemically active shale. — Proc. R. Soc. bond., A 440, pp. 365-377.
  15. Frenkel Ya. I. 1944. K teorii seysmicheskikh i seysmoelektricheskikh yavleniy vo vlazhnoy pochve. — [To the theory of seismic and seismic-electric phenomena in wet soil] Izv. USSR Academy of Sciences, ser. geogr. and geophysics. v.8, 133–146 p.
  16. Biot M. A. 1956. Theory of propagation of elastic waves in fluid-saturated porous solid I. low-frequency range. — The Journal of the Acoustical Society of America. Vol. 28. 168–178 p.
  17. 1993. Dorovsky V. N., Perepechko Yu. V., Romensky E. I. Wave processes in saturated porous elastically deformable media. — Combustion and explosion physics. No. 1. 100–111 p.
  18. Blokhin A. M., Dorovsky V. N. 1995. Mathematical modelling in the theory of multivelocity continuum. — Nova Science., New York.
  19. Imomnazarov Kh. H. 2000. Several remarks on the system of equations of Biot . — Reports of the RAS. T. 373, No. 4. 536–537 p.
  20. Imomnazarov Kh. Kh. 2000. General theory of three-dimensional consolidation. — Appl. Math. Lett. Vol. 13, No. 3. 33–35 p.
  21. Voskoboynikova G., Imomnazarov Kh., Mikhailov A., Tang J. G. 2017. Influence of snow cover on the seismic waves propagation. — Lecture Notes in Computer Science, 697-703 p.
  22. Yew C. H., Chenevert M. E., Wang C. L., Osisanya S. O. 1990. Wellbore stress distribution produced by moisture adsorption — SPE Drilling Engn, 5, 311–316 p.
  23. Sherwood J. D., Bailey L. 1994. Swelling of a shale around a cylindrical wellbore. — Proc Royal Soc Lond A., v. 444, 161—184 p.
  24. Imomnazarov B., Imomnazarov Kh. 2017. Poroelasticity theory of chemically active clay shales. — Bull. Nov. Comp. Center, Math.Model. in Geoph., No. 20., 11–17 p.
  25. Imomnazarov Kh. H., Kholmurodov A. E. 2017. Modelirovanie i issledovanie pryamykh i obratnykh dinamicheskikh zadach porouprugosti.. — [Modeling and research of direct and inverse dynamic problems of poroelasticity.] Ed. University, Tashkent, 120 p.
  26. Savage W. Z., Braddock W. A. 1991. A model for hydrostatic consolidation of Pierre shale. — Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., v. 28, 345–354 p.
  27. 1993. Swolfs H. S., Nichols T. C.Jr 1987. Anisotropic characterization of Pierre shale - preliminary results. — U.S. Geological Survey Open file report,

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS