Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Mathematical and numerical models of thermoelastic plates of complex configuration

Анарова Ш.А.

Абдирозиков О.Ш.

Муҳаммад ал-Хоразмий авлодлари

  • № 4 (10) 2019

Страницы: 

133

 – 

138

Язык: английский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

В статье обсуждаются математические и численные модели термоупругих пластин сложной конфигурации. Определены основные уравнения двумерной термоупругости в квазистатическом утверждении, стационарной теплопроводности пластины; определена математическая модель термоупругих пластин. Вычислительный алгоритм для расчета магнитоупругих пластин сложной конфигурации разработан с использованием комбинации В.Л. Метод R-функции Рвачева и метод Бубнова-Галеркина. Описан вычислительный алгоритм расчета термоупругих пластин сложной конфигурации. Проведены вычислительные эксперименты для расчета термоупругих пластин сложной конфигурации. Результаты вычислительных экспериментов приведены в виде таблиц.

Mathematical and numerical models of thermoelastic plates of complex configuration are discussed in the paper. The basic equations are determined of two-dimensional thermoelasticity in a quasistatic statement, stationary thermal conductivity of a plate; a mathematical model of thermoelastic plates is determined. A computational algorithm for calculating magnetoelastic plates of complex configuration is developed using a combination of V.L. Rvachev Rfunction method and Bubnov-Galerkin method. A computational algorithm for calculating thermoelastic plates of complex configuration is described. Computational experiments were carried out to calculate thermoelastic plates of complex configuration. The results of computational experiments are given in the form of tables.

Список использованных источников

  1. Badalov F.B. Methods for solving integral and integro-differential equations of the hereditary theory of viscoelasticity. Tashkent: Mekhnat, 1987 .- 270 p.
  2. Samarsky A.A., Gulin A.V. Numerical methods. - M.:Nauka, 1989.- 432 p.
  3. Samarsky A.A., Mikhailov A.P. Mathematical Modeling: Ideas, Methods, Examples. - M.: Fizmatlit, 2002 .-320 p.
  4. Averil R.C., Reddy J.N. “An assessment of four-noded plate finite elements based on a generalized third-order theory”,Int. J. Numer. Methods Engng., 33, 1553-1572 (1992).
  5. Kant T., Manjunatha B.S. “On accurate estimation of transverse stresses in multilayer laminates”, Comput. Struct.,50, no. 3, 351-365 (1994).
  6. Tessler A., Riggs H.R., Macy S.C. “Variational method for finite element stress recovery and error estimation”,Comp. Meth, Appl. Mech. Engng., 111, 369-382, (1994).
  7. Jay Z. Yuan, Atef F. Saleeb, Atef S. Gendy, “Stress projection layerwise – equivalent, formulation for accurate predictions of transverse stresses in laminated plates and shells”Inter. J. of Computational engineering science, Volume 1,Number 1, (91 – 138), 2000.
  8. Kovalenko A. D. Fundamentals of thermoelasticity –Kiev: Naukova Dumka, 1970. -308 p.
  9. Mikhlin S. G. Variational methods in mathematical physics. - M.: Nauka, 1970 .- 515 p.
  10. Nazirov Sh.A., Nuraliev F.M Mathematical modeling of processes of electro-magnetic fields' effects on thin conducting plates of complex form. The 4th International Conference on Application of Information and Communication Technologies. AICT2010. Uzbekistan, Tashkent, 12-14 October 2010. p. 125-129. http://aict2010.qafqaz.edu.az.
  11. Nazirov Sh.A., Nuraliev F.M Algorithmization of the decision of classes of multidimensional problems of magnetoelasticity of thin plates and shells, Second IEEE and IFIP International Conference in Central Asia on Internet, ICI 2006 September 19-21, 2006. Tashkent, Uzbekistan. http://www.omidyar-institute.org/ici2006/.
  12. Rvachev V.L. The theory of R - functions and some of its applications. - Kiev: Naukova Dumka, 1987 .- 259 p.
  13. Nazirov Sh. A., Piskorsky L. F. Complex of programs for calculation and optimization of plate constructions of complex configuration // Algorithms. - Tashkent, 1995. - Issue 80. - p. 41–54.
  14. Nazirov Sh.A., Piskorsky L.F. A set of software for calculating and optimizing plate designs with a complex shape / Algorithms: Sat. - Tashkent, IK AN RUz, issue. 81. - p. 41-54.
  15. Nazirov Sh.A., Sadikov H.S. A software package for solving boundary value problems by variational methods /Algorithms: scientific transactions - Tashkent, IK AN RUz,1988. - issue. 65.- p. 38-48.
  16. Nazirov Sh.A., Nuraliev F.M., Amanov O.T. The structure of a software complex for solving boundary value problems for systems of partial differential equations // Uzb.journal "Problems of computer science and energy." - Tashkent,1998. - No. 6. - P. 40-43.
  17. Nazirov Sh.A., Abduazizov A.A. Description of the complex of programs for calculating electronic devices / / Calculation and appl. Mathematics: scientific transactions - Tashkent, Center for RPP and AIC, 2012.  issue 128. - P.6484.
  18. Anarova Sh.A., Nazirov A.Sh. The structure of a set of programs for studying the stress-strain state of elastic prismatic bodies of arbitrary section // TATU Khabarlari. - 2016. - No. 1 (37). - P. 51-59.

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS