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Annotation. Mathematical and numerical models of thermoelastic plates of complex configuration are discussed in 

the paper. The basic equations are determined of two-dimensional thermoelasticity in a quasistatic statement, stationary 

thermal conductivity of a plate; a mathematical model of thermoelastic plates is determined. A computational algorithm 

for calculating magnetoelastic plates of complex configuration is developed using a combination of V.L. Rvachev R-

function method and Bubnov-Galerkin method. A computational algorithm for calculating thermoelastic plates of com-

plex configuration is described. Computational experiments were carried out to calculate thermoelastic plates of complex 

configuration. The results of computational experiments are given in the form of tables. 
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Introduction. The solution of problems of modern infor-

mation technologies includes a large amount of research on al-

gorithms and programs, and an analysis and processing of re-

sults. The method of scientific research and engineering calcu-

lations, which provides a solution to important class of prob-

lems is called a computational experiment. Currently, the meth-

ods of mathematical simulation are used to study various prob-

lems in economy posed by the engineering practice in mathe-

matical physics and related to engineering calculations of vari-

ous physical and mechanical fields, such as temperature, force, 

strain fields, which determine the main qualitative characteris-

tics of products (transfers reliability, durability, etc.) [1-7]. So, 

this article is devoted to the mathematical simulation of ther-

moelastic plates of complex configuration. 

The problem of thermal stress state arises in the most di-

verse fields of engineering and is one of the main problems in 

strength of structure elements operating in conditions of non-

uniform and non-stationary heating. Under non-uniform and 

non-stationary heating, the physicomechanical properties of 

materials change, the temperature gradients arise that cause 

thermal stresses. Knowledge of the magnitude and nature of 

thermal stresses is necessary for a comprehensive analysis of 

the structure strength. 

In recent years, practical importance of study of structure 

element vibrations caused by a variable heat load has grown in 

connection with the use of flexible power elements on satellites, 

and the needs of nuclear power ingineering. 

Variation principles that allow us to obtain differential equa-

tions and approximate solutions to specific problems are of great 

importance in the theory of thermoelasticity. The first variation 

principle of linear coupled thermoelasticity was developed by 

M. Biot. By analogy with the results of the isothermal theory of 

elasticity, this investigation was generalized by research in ther-

moelasticity. 

The quasistatic problems of thermoelasticity used in practice 

are the plane problems of thermoelasticity, the thermoelasticity 

of circular plates and shells of revolution, and the axisymmetric 

thermoelasticity problems. 

In practice, the problems of complex calculation of physi-

comechanical fields are numerous, they include the processes 

of thermoelastic thin plates oscillation, where the interaction of 

temperature and strain fields is considered. 

Due to the complex calculation of physical and mathemati-

cal fields by mathematical models, such processes enter the 

group of interconnected boundary value problems. 

In this case, we are talking about an uncoupled problem of 

thermoelasticity of thin plates. First the problem of fluctuation 

of unsteady heat conductivity of plates is solved and the tem-

perature T  is determined. Then, the value of T , as the mass 

force enters the right side of the equation of plate motion, which 

in turn is solved under initial and corresponding boundary con-

ditions depending on how the plate edges are fixed.  

The statement of the problem of thermoelastic plates of 

complex configuration. First, consider mathematical models 

of heat conduction processes. 

We set the middle surface of the thin plate in 0x y plane of 

the Cartesian coordinate system. Denote the plate thickness by 

h . Consider a plate under non-stationary convective heat trans-

fer on its contour Γ  and on surfaces 
2

h
z    (Fig. 1). 

 
Fig. 1. Plate under non-stationary convective heat transfer 

 

Mathematical model of thermoelastic plates of complex 

configuration. Determination of the non-stationary tempera-

ture field of such a plate at constant thermophysical character-

istics is reduced to solving an equation of the form [8]: 
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The solution of equation (1) must satisfy the following ini-

tial and boundary conditions 
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In equations (1) - (3) the following notations are introduced: 
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T  is the plate temperature; 0T  is the initial temperature of 

the plate; 3 4, ,Г and    are the temperatures of the me-

dium on the plate contour Γ , on the surfaces 

; ;
2 2

h h
z and z  

3 4, ,Г and   , respectively, 

3 4,L and    are the heat transfer coefficients on the 

plate contour Γ , on the surfaces ; ;
2 2

h h
z and z    and 

  is the coefficients of heat and temperature conductivity of 

the plate material, n is the external normal to the plate.  

When drawing up the third boundary condition (4), we take 

into account that the direction of the external normal to the sur-

face 
2

h
z    is opposite to the positive direction of the z  

axis. 

Reducing the three-dimensional non-stationary heat con-

ductivity problem (1) to the two-dimensional one an approxi-

mate solution to this problem is determined. Approximating the 

temperature distribution T  over the plate thickness by a power 

law 
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the problem under consideration is reduced to the two-di-

mensional one. 

To derive an equation satisfying the functions 
(j)T , we 

multiply equation (1) by, ( 0,1,..., ),pz p m and inte-

grate it over z  from 
2

h
 ; to 
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h
, taking into account the iden-
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and boundary conditions (3). As a result we get: 
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Performing similar operations with condition (2) and the 

first one of conditions (3), we find the following boundary con-

ditions for function p : 
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Varying the values of p in equation (4) and conditions (7), 

we can compose a system of equations describing the non-sta-

tionary thermal conductivity of the plate for different power 

laws of temperature change along the plate thickness. We pre-

sent these equations and the corresponding boundary conditions 

in the case when the quantities 0 ГT and   are independent 

of z . 

Assuming temperature to be constant along the plate thick-

ness 

(0)T T   (8) 

and assuming that 0p   we get the heat conduction 

equation: 
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Assuming a linear law of temperature variation along the plate 

thickness   
(0) (1) T T T z      (12) 

corresponding to the values 10  pandp , we find a 

system of two equations of thermal conductivity: 
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Assuming a quadratic law of temperature variation along 

the plate thickness 
(0) (1) (2) 2 ,T T T z T z     (17) 

corresponding to the values of 0, 1 2p p and p   , 

after some transformations we get the system of three equations 

of thermal conductivity [8]: 
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At identical heat transfer coefficients 

3 4    , and, 

consequently, identical parameters
3 4    , equations (17), 

(18), (19) and (20) are, respectively: 
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This problem is reduced to integrating equation [8]: 
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and boundary conditions depending on how the plate ends are 

fixed: 
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where T  is the coefficient of linear dilatation (expansion) of 

materials; 

0 - Poisson's ratio; iL - given differential operator; iΓ - 

coverage of the domain boundary  1,i n   i.e. 

1

n

i
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 ; i  are the functions defined in the domains iΓ . 

Here, the temperature field T  is determined by the solution 

of a boundary value problem of the form 
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where ,k



   is the heat transfer coefficient,   is the co-

efficient of thermal conductivity of the material. 

Boundary condition (32) characterizes the law of heat trans-

fer between the surface of the body and the surrounding me-

dium under heating. 

As seen, the solution of the problems of thermoelastic plates 

is divided into two stages: the temperature field T  is deter-

mined and then the deflection W , bending moments xM , 

yM and torque xyM  under the influence of temperature.  

Computational algorithm for thermoelastic plates of 

complex configuration. A computational algorithm for ther-

moelastic plates of complex configuration is realized using a 

combination of the Bubnov – Galerkin methods [9–11] and 

V.L. Rvachev algebraic-logical method of R-function [12]. 

For this purpose, consider particular cases of boundary con-

ditions given in the first paragraph [8]: 

a) the first principal task (the Dirichlet problem), at the 

boundary of the body Γ  the temperature distribution is set  

0Г
u  .              (33) 

A boundary value problem of this kind is considered when, 

due to intense heat transfer, the temperature on the surface of 

the body of external medium is different; 

b) the second principal task (the Neumann problem), the 

value of the heat flow for each surface of the body is set 

0

Г

u

n
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

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where n is the normal to Γ , 0  is the flow density on the 

surface of the body. 

Such boundary-value problems usually result in problems of 

body heating  by external sources of a given intensity 0 . At 

0 0  , the condition is called the condition of thermal insu-

lation; 

c) the third principal task (the problem with an oblique de-

rivative), a condition of this kind characterizes the heat transfer 

between the surface of the body and the medium under heating. 

In this case, the ambient temperature cT  is set and the law of 

heat transfer between the surface of the body and the medium 

is valid: 
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where 0  is the coefficient of heat transfer. 

This condition is re-written as: 
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d) conditions of the fourth kind express the thermal interac-

tion between the contacting bodies. The simplest version of 

these conditions expresses the equality of temperatures and heat 

flows on both sides of the material interface. In this case, the 

medium conjugation condition is written as follows 

1 2
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where 
1 2 1 2, , ,T T k k  are the temperatures and thermal conductiv-

ity of contacting media, respectively. It follows from (36) that 

the solution of the conjugate problem is related to finding tem-

perature fields on both sides of the material interface. 

The boundary conditions can be of a mixed type, when a 

condition of one kind is specified on a part of the body surface, 

and of a different kind - on the remaining part. There may be 

various combinations of the above principal types of boundary 

conditions. Note the most common in practice: temperature is 

set on a part of the body surface, and the remaining part of this 

surface is thermally insulated, i.e.  
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Solution structures for the above boundary conditions (33) 

- (37) have the form [12]: 
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Here 0Ф is an arbitrary function, index 2 indicates that the op-

erator 1D is taken by function 2 . 

The structure of problem (31) - (32) solution has the form 

[12]: 
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Further, applying the Bubnov-Galerkin method, we obtain 

a system of algebraic equations of the form  
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System (43) can be solved by the Gauss method or least 

squares or inversion method. Computational experiments are 

carried out with respect to the number of coordinate functions 

(CF), the number of Gaussian nodes (GN). As a result, a stable 

value of the temperature field T  is selected. 

Then the problem (29) is solved. 

The solution to this problem is: 
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At initial conditions 

0 0
0 0, ,

t t t t
C C C C

 
        (46) 

where 

  ,ij i jA a W W d=


 
  
 
 

  ,ij i jB b W W d=


 
   
 
 

 
 

 
2 2

0 2 2
1 ,T

T T
q

x y
 

  
    

  
 

1

0 0 ,jC A W W d



  
  

  


1

0 0 jC A W W d



  
  

  
  

The resulting system of ordinary differential equations (45) 

at initial conditions (46) is solved by the Newmark method or 

the method of square sums. 

The values of  tijC are substituted in (44) and the deflection 

W , bending moments, xM , yM and torque xyM  are deter-

mined. Here, the software package is supplemented with appro-

priate software modules for solving this problem [13-18]. 

The convergence of the computational algorithm was inves-

tigated with a change in the type of polynomials (power, trigo-

nometric, Chebyshev), the number of coordinate functions and 

the number of Gaussian nodes. 

A numerical model of thermoelastic plates of complex 

configuration. Consider the problem of bending of a single cir-

cular rigidly fixed thermoelastic plate. Let the temperature field 

be determined by the following equation at the boundary con-

dition: 

 
2 2

2 2

2 2
4 4 1 ,

T T
T x y

x y

 
    

 
  (47) 

3 1
T

T




 
  

 

    (48) 

Stress state of the plate is determined from the solution of 

the following problem: 
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 
2 2

4

0 2 2
1 ,T

T T
D W

x y
 

  
     

  
  (49) 

0, 0
W

W


 
  

 
   (50) 

It is not difficult to check that the exact solution to problem 

(47) - (48) has the form: 

  2 2,T x y x y   

As seen from the table, the approximate solution obtained 

completely agrees with the exact solution, which proves the 

truth of the way we took for solving the problem of thermoelas-

tic plates. 

Table 1. 

Results of the problem of bending of a single circu-

lar rigidly fixed thermoelastic plate 

x, y (CF, GC) Q 𝑊∗ 𝑀𝑥 𝑀𝑦 

(0,0;0,0) Exact sol-n 

(10, 10) 

(15, 20) 

40 

40 

40 

00625 

00625 

00625 

03250 

03250 

03250 

03250 

03250 

03250 

(0,0;0,0) Exact sol-n 

(10, 10) 

(15, 20) 

40 

40 

40 

00529 

00529 

00529 

02730 

02730 

02730 

02730 

02730 

02730 

 

The following notations are given in the tables: 
2 2

2 2
,

T T
Q

x y

 
 
 

 

 
*

01T

D
W W

 




 

Further, problems (47) - (48), (49) - (50) are solved for 

other types of plates, for example, for a square plate with a 

circular hole. Here, the convergence is investigated with respect 

to the number of coordinate functions (CF) and the number of 

Gaussian nodes (GC). The results of the computational 

algorithm are shown in Tables 1, 2.

Table 2. 

Results of deflection W , bending moments xM , yM  and torque xyM  of a single circular rigidly fixed thermoelastic 

plate 

 

x, y (CF, GC) Q 𝑊   𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 

(0.2;0.2) (10,10) 

(15,20) 

8458,83 

8457,12 

0,0003427 

0,0003421 

0,0594 

0,0583 

0,0589 

0,0575 

-0,0126 

-0,0119 

(0.5;0.5) (10,10) 

(15,20) 

167,005 

166,871 

0,001703 

0,001701 

0,0357 

0,0348 

0,0127 

0,0119 

-0,0015 

-0,0009 

(0.8;0.8) (10,10) 

(15,20) 

5674,70 

5669,85 

0,000439 

0,000432 

-0,0036 

-0,0031 

0,0143 

0,0138 

-0,0147 

-0,0135 
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Conclusions. The basic equations are determined: of two-

dimensional thermoelasticity in a quasistatic statement; of sta-

tionary thermal conductivity of a plate. A mathematical model 

of thermoelastic plates is determined. A computational algo-

rithm for calculating magnetoelastic plates of complex config-

uration is developed using a combination of the Bubnov-Ga-

lerkin method and Rvachev R-function method. Computational 

experiments were carried out to calculate thermoelastic plates 

of complex configuration. 

 

Анарова Ш.А., Абдирозиков О.Ш. 

Математические и численные модели термоупру-

гих пластин сложной конфигурации 

Аннотация. В статье обсуждаются математические и 

численные модели термоупругих пластин сложной конфи-

гурации. Определены основные уравнения двумерной тер-

моупругости в квазистатическом утверждении, стационар-

ной теплопроводности пластины; определена математиче-

ская модель термоупругих пластин. Вычислительный алго-

ритм для расчета магнитоупругих пластин сложной конфи-

гурации разработан с использованием комбинации В.Л. 

Метод R-функции Рвачева и метод Бубнова-Галеркина. 

Описан вычислительный алгоритм расчета термоупругих 

пластин сложной конфигурации. Проведены вычислитель-

ные эксперименты для расчета термоупругих пластин 

сложной конфигурации. Результаты вычислительных экс-

периментов приведены в виде таблиц. 

Ключевые слова: математические модели, числен-

ные модели, термоупругие пластины, комплексная конфи-

гурация, метод R-функции Рвачева, метод Бубнова-Галер-

кина.
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