Математическое моделирование стабилизации гидропривода с нелинейной нагрузкой
- № 3(21) 2019
Страницы:
30
–
39
Язык: русский
Аннотация
В статье рассмотрена задача стабилизации гидропривода, состоящего из насоса переменной подачи, соединительного трубопровода и гидроцилиндра. Математическое моделирование гидросистемы произведено на основе нелинейных дифференциальных уравнений, учитывающих нелинейную характеристику типа вязкого трения. Решение задачи об определении движений в гидравлическом приводе сведено к исследованию переходного процесса и фазовых плоскостей динамической системы. Используя метод фазового пространства, установлены условия возникновения автоколебаний в системе. Полученные уравнения фазовых траекторий системы являются фокусами и предельными циклами с особой точкой в начале координат. Для исследования поведений траекторий вблизи начала координат применен критерий Ляпунова. Функция Ляпунова исследовалась в виде квадратичной формы. Установлены условия двух возможных сценариев поведения траекторий, при которых происходит смена характерных режимов работы гидравлического привода: а) когда окрестность особой точки неустойчива; б) когда окрестность особой точки устойчива. Для автоколебательной системы построена определенно положительная функция Ляпунова, производная которой, полученная в силу дифференциальных уравнений движений системы, является определенно отрицательной. На основе метода функций Ляпунова установлен закон стабилизации, обеспечивающий устойчивость гидропривода с нелинейной нагрузкой, а также построены диаграммы фазовых портретов и временная реализация переходных процессов при различных значениях параметров системы. Полученные результаты могут быть распространены и на другие типы технических систем для аналогичных динамических моделей.
The problem of stabilizing a hydraulic drive, consisting of a pump of variable feed, connecting pipe and hydraulic cylinder is considered in the paper. Mathematical simulation of the hydro system was made on the basis of nonlinear differential equations considering the nonlinear characteristics of viscous friction type. The solution of the problem of determining the motions in a hydraulic drive is reduced to the study of the transient process and the phase planes of a dynamic system. Using the method of phase space the conditions for the occurrence of self-oscillations in the system are stated. The resulting equations of phase trajectories of the system are the foci and limit cycles with a singular point at the origin. To study the behavior of trajectories near the origin, the Lyapunov’s criterion is applied. The Lyapunov function is investigated in a quadratic form. The conditions of two possible scenarios of the behavior of the trajectories are stated, under which the change in characteristic modes of operation of the hydraulic drive occurs: a) when the vicinity of the singular point is unstable; b) when the vicinity of the singular point is stable. A definitely positive Lyapunov function for a self-oscillating system is obtained; its derivatives, obtained by differ- ntail equations of motion of the system, are definitely negative. Based on the Lyapunov function method, the stabilization law for a hydraulic drive under nonlinear load is obtained, and the diagrams of phase portraits are constructed, as well as a time implementation of transient processes under different values of the system parameters. The results obtained can be distributed on other types of engineering systems, on analogous dynamic models.
The problem of stabilizing a hydraulic drive, consisting of a pump of variable feed, connecting pipe and hydraulic cylinder is considered in the paper. Mathematical simulation of the hydro system was made on the basis of nonlinear differential equations considering the nonlinear characteristics of viscous friction type. The solution of the problem of determining the motions in a hydraulic drive is reduced to the study of the transient process and the phase planes of a dynamic system. Using the method of phase space the conditions for the occurrence of self-oscillations in the system are stated. The resulting equations of phase trajectories of the system are the foci and limit cycles with a singular point at the origin. To study the behavior of trajectories near the origin, the Lyapunov’s criterion is applied. The Lyapunov function is investigated in a quadratic form. The conditions of two possible scenarios of the behavior of the trajectories are stated, under which the change in characteristic modes of operation of the hydraulic drive occurs: a) when the vicinity of the singular point is unstable; b) when the vicinity of the singular point is stable. A definitely positive Lyapunov function for a self-oscillating system is obtained; its derivatives, obtained by differ- ntail equations of motion of the system, are definitely negative. Based on the Lyapunov function method, the stabilization law for a hydraulic drive under nonlinear load is obtained, and the diagrams of phase portraits are constructed, as well as a time implementation of transient processes under different values of the system parameters. The results obtained can be distributed on other types of engineering systems, on analogous dynamic models.