Математическое моделирование нелинейных волновых систем
- № 1(13) 2018
Страницы:
21
–
31
Язык: русский
Аннотация
Для математического моделирования нелинейных волновых систем все более широко применяются численные
методы. В то же время их применение к решению эволюционных задач с большими градиентами, описываемых
нестационарными уравнениями в частных производных наталкиваются на серьёзные трудности. Они связаны,
главным образом, с наличием малого параметра при старшей производной и, как следствие, появлением в
решении областей сильной пространственной неоднородности. Поэтому требования, предьявляемые к
аппроксимационным свойствам численных методов, резко возрастают. Для решения указанных систем в
основном применялись спектральные методы. В данной работе для численного моделирования нелинейных
волновых систем применяется спектрально-сеточный метод. В спектрально-сеточном методе интервал
интегрирования по пространственной переменной разбивается на сетку, в элементах сетки приближенное
решение аппроксимируется с помощью линейной комбинации различного числа рядов по полиномам
Чебышева первого рода. Среди ортогональных полиномов только полиномы Чебышева обладают минимаксным
свойством, т.е для этих полиномов максимальное отклонение от искомого решения минимально. Кроме того,
для вычислительного применения полиномов Чебышева имеются удобные рекуррентные формулы. С помощью
этих формул можно легко вычислить значения полиномов и их производных нужного порядка. При
применении спектрально-сеточного метода во внутренних узлах введенной сетки налагаются требования
непрерывности приближенного решения и его производных до (m -1) -го порядка, где m – порядок старшей
производной дифференциального уравнения. В результате аппроксимации основного дифференциального
уравнения, начально-краевых условий и условий непрерывности спектрально-сеточным методом получается
система алгебраических уравнений.
Спектрально-сеточный метод применен для численного моделирования начально-краевых задач для
уравнений теплопроводности и нелинейных эволюционных уравнений. Проведенные численные расчёты
показывают высокую вычислительную эффективность спектрально-сеточного метода.
Numerical methods are increasingly used for the mathematical modeling of nonlinear wave systems. At the same time, their application to the solution of evolutionary problems with large gradients, described by non-stationary partial differential equations, is subject to serious difficulties. They are associated mainly with the presence of a small parameter with the oldest derivative and, as a consequence, the appearance in the solution of regions of strong spatial inhomogeneity. Therefore, the requirements imposed on the approximation property of numerical methods increase sharply. To solve these systems, spectral methods were mainly used. In this paper, the spectral-grid method is used to numerically simulate nonlinear wave systems. In the spectral-grid method, the interval of integration over the spatial variable is divided into a grid, in the grid elements the approximate solution is approximated with the help of a linear combination of a different number of series in Chebyshev polynomials of the first kind. Among the orthogonal polynomials, only Chebyshev polynomials have a minimax property, ie for these polynomials the maximum deviation from the required solution is minimal. In addition, for computational application of Chebyshev polynomials there are convenient recurrence formulas. With the help of these formulas it is easy to calculate the values of polynomials and their derivatives of the required order. When applying the spectral-grid method, the internal nodes of the introduced grid are subject to the continuity requirements of the approximate solution and its derivatives up to (m -1) -th order, where m is the order of the highest derivative of the differential equation. As a result of approximation of the basic differential equation, initial-boundary conditions and continuity conditions by a spectral-grid method, a system of algebraic equations is obtained. The spectral — grid method is applied to numerical modeling of initial — boundary value problems for heat conduction equations and nonlinear evolution equations. The numerical calculations performed show the high combining efficiency of the spectral-grid method.
Sonli metodlar chiziqli bo’lmagan to’lqinli tizimlarni matematik modellashtirishga tobora keng qo’llanilayapdi. Ayni paytda, ularning nostatsionar tenglamalar bilan tavsiflanadigan, katta gradientga ega bo’lgan evolyutsion tenglamalarni yechishga tatbiqi jiddiy qiyinchiliklarga sabab bo’ladi. Ushbu qiyinchiliklar asosan yuqori tartibli hosila oldida kichik parametr mavjudligi tufayli, yechim sohasida kuchli fazoviy notekisliklar paydo bo’lishi bilan bog’liq. Shu sababli, sonli metodlarning approksimatsiyalash hususiyatlariga qo’yiladigan talab, keskin ortib ketadi. Qayd etilgan tizimlarni tadqiq etishda asosan spektral metodlar qo’llanib kelingan. Ushbu ishda chiziqli bo’lmagan to’lqinli tizimlarni sonli modellashtirishga spektral – to’r metodi qo’llaniladi. Spektral – to’r metodida fazoviy o’zgaruvchi bo’yicha integrallash intervalida to’r kiritiladi, to’rning har bir elementida taqribiy yechim birinchi turdagi Chebishev ko’phadlarining turli chiziqli kombinatsiyalari orqali approksimatsiyalanadi. Ortogonal ko’phadlar orasida faqat Chebishev ko’phadlarigina minimaks hususiyatiga ega, ya’ni, ular uchun izlanayotgan yechimdan maksimal cheklanish minimal bo’ladi. Bundan tashqari, Chebishev ko’phadlarining hisoblash nuqtai-nazaridan tadbiqi uchun qulay rekurrent formulalar mavjud. Ushbu formulalar yordamida ko’phadlar va ularning kerakli tartibli hosilalarini osongina hisoblash mumkin. Spektral – to’r metodining qo’llanilishida kiritilgan to’rning ichki tugunlarida taqribiy yechim va uning (m -1) – tartibligacha bo’lgan hosilalarining uzluksizligi talabi qo’yiladi, bu yerda m – differensial tenglamadagi yuqori tartibli hosila tartibi. Asosiy differensial tenglama, boshlang’ich – chegaraviy shartlar va uzluksizlik shartlarini spektral – to’r metodi bilan approksimatsiyalash natijasida algebraik tenglamalar sistemasi hosil qilinadi. Spektral – to’r metodi issiqlik o’tkazuvchanlik tenglamasi va chiziqli bo’lmagan evolyutsion tenglamalarni boshlang’ich – chegaraviy shartlari bilan sonli modellashtirishga tadbiq etilgan. O’tkazilgan sonli hisoblashlar spektral – to’r metodining hisoblash samaradorligi yuqori ekanligini ko’rsatadi.
Numerical methods are increasingly used for the mathematical modeling of nonlinear wave systems. At the same time, their application to the solution of evolutionary problems with large gradients, described by non-stationary partial differential equations, is subject to serious difficulties. They are associated mainly with the presence of a small parameter with the oldest derivative and, as a consequence, the appearance in the solution of regions of strong spatial inhomogeneity. Therefore, the requirements imposed on the approximation property of numerical methods increase sharply. To solve these systems, spectral methods were mainly used. In this paper, the spectral-grid method is used to numerically simulate nonlinear wave systems. In the spectral-grid method, the interval of integration over the spatial variable is divided into a grid, in the grid elements the approximate solution is approximated with the help of a linear combination of a different number of series in Chebyshev polynomials of the first kind. Among the orthogonal polynomials, only Chebyshev polynomials have a minimax property, ie for these polynomials the maximum deviation from the required solution is minimal. In addition, for computational application of Chebyshev polynomials there are convenient recurrence formulas. With the help of these formulas it is easy to calculate the values of polynomials and their derivatives of the required order. When applying the spectral-grid method, the internal nodes of the introduced grid are subject to the continuity requirements of the approximate solution and its derivatives up to (m -1) -th order, where m is the order of the highest derivative of the differential equation. As a result of approximation of the basic differential equation, initial-boundary conditions and continuity conditions by a spectral-grid method, a system of algebraic equations is obtained. The spectral — grid method is applied to numerical modeling of initial — boundary value problems for heat conduction equations and nonlinear evolution equations. The numerical calculations performed show the high combining efficiency of the spectral-grid method.
Sonli metodlar chiziqli bo’lmagan to’lqinli tizimlarni matematik modellashtirishga tobora keng qo’llanilayapdi. Ayni paytda, ularning nostatsionar tenglamalar bilan tavsiflanadigan, katta gradientga ega bo’lgan evolyutsion tenglamalarni yechishga tatbiqi jiddiy qiyinchiliklarga sabab bo’ladi. Ushbu qiyinchiliklar asosan yuqori tartibli hosila oldida kichik parametr mavjudligi tufayli, yechim sohasida kuchli fazoviy notekisliklar paydo bo’lishi bilan bog’liq. Shu sababli, sonli metodlarning approksimatsiyalash hususiyatlariga qo’yiladigan talab, keskin ortib ketadi. Qayd etilgan tizimlarni tadqiq etishda asosan spektral metodlar qo’llanib kelingan. Ushbu ishda chiziqli bo’lmagan to’lqinli tizimlarni sonli modellashtirishga spektral – to’r metodi qo’llaniladi. Spektral – to’r metodida fazoviy o’zgaruvchi bo’yicha integrallash intervalida to’r kiritiladi, to’rning har bir elementida taqribiy yechim birinchi turdagi Chebishev ko’phadlarining turli chiziqli kombinatsiyalari orqali approksimatsiyalanadi. Ortogonal ko’phadlar orasida faqat Chebishev ko’phadlarigina minimaks hususiyatiga ega, ya’ni, ular uchun izlanayotgan yechimdan maksimal cheklanish minimal bo’ladi. Bundan tashqari, Chebishev ko’phadlarining hisoblash nuqtai-nazaridan tadbiqi uchun qulay rekurrent formulalar mavjud. Ushbu formulalar yordamida ko’phadlar va ularning kerakli tartibli hosilalarini osongina hisoblash mumkin. Spektral – to’r metodining qo’llanilishida kiritilgan to’rning ichki tugunlarida taqribiy yechim va uning (m -1) – tartibligacha bo’lgan hosilalarining uzluksizligi talabi qo’yiladi, bu yerda m – differensial tenglamadagi yuqori tartibli hosila tartibi. Asosiy differensial tenglama, boshlang’ich – chegaraviy shartlar va uzluksizlik shartlarini spektral – to’r metodi bilan approksimatsiyalash natijasida algebraik tenglamalar sistemasi hosil qilinadi. Spektral – to’r metodi issiqlik o’tkazuvchanlik tenglamasi va chiziqli bo’lmagan evolyutsion tenglamalarni boshlang’ich – chegaraviy shartlari bilan sonli modellashtirishga tadbiq etilgan. O’tkazilgan sonli hisoblashlar spektral – to’r metodining hisoblash samaradorligi yuqori ekanligini ko’rsatadi.