Математическое моделирование амплитуды функции тока для плоского течения пуазейля
- № 4(16) 2018
Страницы:
14
–
24
Язык: русский
Аннотация
Решения проблемы гидродинамической устойчивости имеет большое практическое значение, так как все гидродинамические характеристики движения существенно зависят от того ламинарное это движение или турбулентное. Проблема устойчивости однофазных гидродинамических систем сводится к проблеме на собственные значения для уравнения Орра-Зоммерфельда. Существующие численные методы для решения проблемы устойчивости можно разделить на несколько групп: 1) конечно-разностные методы; 2) методы пошагового интегрирования; 3) метод исключения и дифференциальной прогонки; 4) спектральный метод; 5) спектрально-сеточный метод. Анализ этих методов показывают, что почти все перечисленные методы, кроме спектрального и спектрально-сеточного метода, предназначены для нахождения только одного собственного значения. Спектральные и спектрально-сеточные методы позволяют определить сразу все собственные значения проблемы устойчивости. Спектрально-сеточный метод эффективен по сравнению с спектрального метода. Спектрально- сеточный метод обладает высокой точностю, экономичен и одновременно определяет все собственные значения и собственные векторы проблемы гидродинамической устойчивости.
The question of the stability of laminar flows and the transition of laminar flow to turbulent flow forms part of the general problem of the onset of turbulence, and also has a great independent significance. To date, extensive experimental material has been accumulated on the behavior of currents in the zone of transition of laminar flow to turbulent flow and the available information indicate the great complexity of this phenomenon. The numerous theoretical studies undertaken are still far from complete. The solution of the problem of hydrodynamic stability is of great practical importance, since all the hydrodynamic characteristics of motion essentially depend on whether this motion is turbulent or turbulent. The application of numerical methods to solving the basic equations of the Navier-Stokes equations for large Reynolds numbers encounters serious difficulties. They are connected, mainly, with the presence of a small parameter with the highest derivative and, as a consequence, the appearance in the solution of regions of strong spatial inhomogeneity. Therefore, the requirements imposed on the approximation properties of numerical methods increase sharply. The problem of the stability of single-phase hydrodynamic systems reduces to an eigenvalue problem for the Orr-Sommerfeld equation. Existing methods for modeling the stability problem allow us to calculate with some accuracy the individual eigenvalues of the stability problem and obtain a solution in the regions of inhomogeneity. However, in calculating the spectrum of eigenvalues, as well as eigenfunctions, their effectiveness is insufficient. The Orr- Sommerfeld equation contains a small parameter with the highest derivative, so it is difficult to obtain approximate solutions close to the exact ones. Existing numerical methods for solving the stability problem can be divided into several groups: 1) finitedifference methods; 2) methods of step-by-step integration; 3) method of elimination and differential sweep; 4) the spectral method; 5) spectral-grid method. An analysis of these methods shows that almost all of the above methods, except for the spectral and spectral-grid method, are intended to find only one eigenvalue. Spectral and spectralgrid methods make it possible to determine all the eigenvalues of the stability problem at once. The spectral-grid method is effective in comparison with the spectral method. The spectral-grid method has high accuracy, is economical and simultaneously determines all eigenvalues and eigenvectors of the problem of hydrodynamic stability.
The question of the stability of laminar flows and the transition of laminar flow to turbulent flow forms part of the general problem of the onset of turbulence, and also has a great independent significance. To date, extensive experimental material has been accumulated on the behavior of currents in the zone of transition of laminar flow to turbulent flow and the available information indicate the great complexity of this phenomenon. The numerous theoretical studies undertaken are still far from complete. The solution of the problem of hydrodynamic stability is of great practical importance, since all the hydrodynamic characteristics of motion essentially depend on whether this motion is turbulent or turbulent. The application of numerical methods to solving the basic equations of the Navier-Stokes equations for large Reynolds numbers encounters serious difficulties. They are connected, mainly, with the presence of a small parameter with the highest derivative and, as a consequence, the appearance in the solution of regions of strong spatial inhomogeneity. Therefore, the requirements imposed on the approximation properties of numerical methods increase sharply. The problem of the stability of single-phase hydrodynamic systems reduces to an eigenvalue problem for the Orr-Sommerfeld equation. Existing methods for modeling the stability problem allow us to calculate with some accuracy the individual eigenvalues of the stability problem and obtain a solution in the regions of inhomogeneity. However, in calculating the spectrum of eigenvalues, as well as eigenfunctions, their effectiveness is insufficient. The Orr- Sommerfeld equation contains a small parameter with the highest derivative, so it is difficult to obtain approximate solutions close to the exact ones. Existing numerical methods for solving the stability problem can be divided into several groups: 1) finitedifference methods; 2) methods of step-by-step integration; 3) method of elimination and differential sweep; 4) the spectral method; 5) spectral-grid method. An analysis of these methods shows that almost all of the above methods, except for the spectral and spectral-grid method, are intended to find only one eigenvalue. Spectral and spectralgrid methods make it possible to determine all the eigenvalues of the stability problem at once. The spectral-grid method is effective in comparison with the spectral method. The spectral-grid method has high accuracy, is economical and simultaneously determines all eigenvalues and eigenvectors of the problem of hydrodynamic stability.