Математическая модель термического состояния пористого тела
- № 1 (49) 2019
Страницы:
61
–
77
Язык: русский
Аннотация
В настоящей статье разработана математическая модель теплового состояния пористого тела, имеющего форму прямоугольного параллелепипеда. При разработке модели учтены внутреннее тепловыделение, теплообмен через поверхности пористого тела с окружающей средой. Для решения задачи разработана модификация дифференциально-разностного метода, где для дискретизации уравнений и условий по времени, абсциссе и ординате используется метод прямых, а по аппликате конечно-разностный метод, а для решения полученной системы уравнений использован метод прогонки. Для описания годового изменения температуры окружающей среды предложена синусоидальная формула, а для суточного изменения — эмпирическая формула, построенная на основе метода наименьших квадратов при изучении термического состояния натуральных продуктов, находящихся под влиянием внешней температуры. Проведен качественный анализ решения и составлена программа проведении вычислительного эксперимента на ЭВМ. Разработанный математический инструмент служит для исследования процессов теплообмена в материалах, находящихся под солнечной радиацией.
Ushbu maqolada to’g’ri burchakli parallelepiped shaklidagi g’ovak jism termal holatining matematik modeli ishlab chiqilgan. Modelni ishlab chiqishda, ichki issiqlik almashinuvi, atrof-muhit bilan g’ovak jism yuza qismining issiqlik almashinuvi hisobga olingan. Muammoni hal etishda differensial-ayirmali usulning modifikatsiyasi ishlab chiqilib, tenglamalarni vaqt bo’yicha absissa va ordinata o’qlarida diskriminatsiya qilishda to’g’ri chiziqlar usuli va aplikata o’qi bo’yicha chekli ayirmalar va haydash usulidan foydalanilgan. Atrof muhit temperaturasining yillik o’zgarishini tavsiflash uchun sinusoidal formula olinib, kundalik o’zgarishi uchun esa tashqi harorat ta’siri ostidagi tabiiy mahsulotlarning termal holatini o’rganish uchun eng kichik kvadratlar metodiga asoslangan emperik formulalar olingan. Yechimni topishda sifatli taxlillar va kompyuterda hisoblash tajribalarini o’tkazish uchun dasturiy ta’minot ishlab chiqilgan. Ishlab chiqilgan matematik dasturiy ta’minot quyosh radiatsiyasi ostida bo’lgan jismlarning issiqlik almashinuvi jarayonini o’rganish uchun xizmat qiladi.
In this paper developed a mathematical model of the thermal state of a porous whole, having the shape of a rectangular parallelepiped. When developing the model, internal heat generation, heat exchange through the surfaces of the porous body with the environment are taken into account. To solve a problem, a modification of the differential-difference method has been developed, where the method of straight lines is used for discretization of equations and conditions in time, in abscissa and ordinate, and in finiteness the finite-difference method and to solve the resulting system of equations used the sweep method. A sinusoidal formula proposed for describing the annual change in ambient temperature, and an empirical formula based on the least squares method proposed for diurnal variation when studying the thermal state of the natural products under the influence of external temperature. A qualitative analysis of the solution was developed and a program compiled for a computing experiment on a computer. The developed mathematical instrument serves to research the processes of heat transfer in materials under solar radiation.
Ushbu maqolada to’g’ri burchakli parallelepiped shaklidagi g’ovak jism termal holatining matematik modeli ishlab chiqilgan. Modelni ishlab chiqishda, ichki issiqlik almashinuvi, atrof-muhit bilan g’ovak jism yuza qismining issiqlik almashinuvi hisobga olingan. Muammoni hal etishda differensial-ayirmali usulning modifikatsiyasi ishlab chiqilib, tenglamalarni vaqt bo’yicha absissa va ordinata o’qlarida diskriminatsiya qilishda to’g’ri chiziqlar usuli va aplikata o’qi bo’yicha chekli ayirmalar va haydash usulidan foydalanilgan. Atrof muhit temperaturasining yillik o’zgarishini tavsiflash uchun sinusoidal formula olinib, kundalik o’zgarishi uchun esa tashqi harorat ta’siri ostidagi tabiiy mahsulotlarning termal holatini o’rganish uchun eng kichik kvadratlar metodiga asoslangan emperik formulalar olingan. Yechimni topishda sifatli taxlillar va kompyuterda hisoblash tajribalarini o’tkazish uchun dasturiy ta’minot ishlab chiqilgan. Ishlab chiqilgan matematik dasturiy ta’minot quyosh radiatsiyasi ostida bo’lgan jismlarning issiqlik almashinuvi jarayonini o’rganish uchun xizmat qiladi.
In this paper developed a mathematical model of the thermal state of a porous whole, having the shape of a rectangular parallelepiped. When developing the model, internal heat generation, heat exchange through the surfaces of the porous body with the environment are taken into account. To solve a problem, a modification of the differential-difference method has been developed, where the method of straight lines is used for discretization of equations and conditions in time, in abscissa and ordinate, and in finiteness the finite-difference method and to solve the resulting system of equations used the sweep method. A sinusoidal formula proposed for describing the annual change in ambient temperature, and an empirical formula based on the least squares method proposed for diurnal variation when studying the thermal state of the natural products under the influence of external temperature. A qualitative analysis of the solution was developed and a program compiled for a computing experiment on a computer. The developed mathematical instrument serves to research the processes of heat transfer in materials under solar radiation.