Математическая модель и алгоритм решения задачи фильтрации нефти в двухпластовых пористых средах
- № 4(16) 2018
Страницы:
33
–
45
Язык: русский
Аннотация
В статье рассматривается актуальная проблема, связанная с разработкой нефтегазовых месторождений с целью повышения газо- и нефтеотдачи пластовых систем и определения основных показателей объекта исследования. Приведен анализ научных работ, связанных с проблемой математического моделирования процесса фильтрации нефти в пластовых пористых средах. Для проведения комплексного исследования рассматриваемого процесса была разработана математическая модель, исходя из основных законов гидромеханики. Разработанная математическая модель сводится к совместному решению системы дифференциальных уравнений параболического типа, описывающих фильтрационные процессы в пластах, разделенных слабопроницаемой перемычкой с соответствующими начальными и граничными условиями. Для интегрирования поставленной, используя конечно-разностный метод, разработан численный алгоритм, реализованный на ЭВМ методом прогонки, а для синтеза основных параметров и их диапазонов изменения проведены вычислительные эксперименты при различных характеристиках пласта и расходов эксплуатационных скважин. Результаты проведенных численных расчетов представлены в графической форме и дан их анализ.
Research paper deals with theincrease of gas and oil recovery reservoir systems and determine the main indicators of the research facility of current problems related to the development of oil and gas fields. Proceeding from the above, a mathematical model for the oil filtration process in two layered porous media was developed in order to carry out a complex study of the process and make managerial decisions, proceeding from the basic laws of hydromechanics of filtration processes. The paper provides a detailed analysis of scientific papers related to the problem of mathematical modeling of the oil filtration process in reservoir porous media. The developed mathematical model reduces to a joint solution of a system of parabolic differential equations that describe the filtration processes in the seams separated by a weakly permeable bridge with the corresponding initial and boundary conditions. To integrate the tasks in the paper, a finite-difference method was used, a numerical algorithm was developed, implemented on a computer by the sweep method, and for computation of the main parameters and their ranges of variation, computational experiments were carried out for various characteristics of the formation and the costs of production wells. The results of the numerical calculations are presented in tabular and graphical form. An analysis of the numerical calculations obtained in the form of conclusions is given.
Research paper deals with theincrease of gas and oil recovery reservoir systems and determine the main indicators of the research facility of current problems related to the development of oil and gas fields. Proceeding from the above, a mathematical model for the oil filtration process in two layered porous media was developed in order to carry out a complex study of the process and make managerial decisions, proceeding from the basic laws of hydromechanics of filtration processes. The paper provides a detailed analysis of scientific papers related to the problem of mathematical modeling of the oil filtration process in reservoir porous media. The developed mathematical model reduces to a joint solution of a system of parabolic differential equations that describe the filtration processes in the seams separated by a weakly permeable bridge with the corresponding initial and boundary conditions. To integrate the tasks in the paper, a finite-difference method was used, a numerical algorithm was developed, implemented on a computer by the sweep method, and for computation of the main parameters and their ranges of variation, computational experiments were carried out for various characteristics of the formation and the costs of production wells. The results of the numerical calculations are presented in tabular and graphical form. An analysis of the numerical calculations obtained in the form of conclusions is given.