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Abstract. Mathematical modeling of the processes of operational dispatch control of complex technological 

objects was carried out using the example of catalytic cracking of oil. It is shown that further progress in the catalytic 

cracking of hydrocarbon feedstock is associated with the involvement of heavy vacuum distillates, fuel oils and other oil 

residues as feedstock for the production of high-octane gasoline fractions, as well as with the implementation of improved 

or advanced control systems and development of adaptive algorithms for operational dispatching predictive control that 

allow control systems to track the current technological situation and form control actions that are adequate to it, 

compensating for uncontrollable disturbances. 
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Introduction 

Modern control systems operate under conditions of internal and external random disturbing 

influences of a parametric, adaptive and multiplicative nature. The problem of decision support in 

systems of operational and predictive control of complex technological processes and industries can be 

characterized by an abundant flow of research and development in the field of modern theory of 

control of complex technological processes and industries, supported by the powerful development of 

modern information technologies and the powerful development of computer technology. 

Currently, one can observe qualitative strategic changes in the principles of making managerial 

decisions in conditions of information uncertainty and risks accompanying the operational and 

predictive control of industrial production. At the same time, if the content side of decision-making 

algorithms in operational and predictive control of technological processes and industries (in 

particular, sequential correction of technological modes based on the results of operational monitoring, 

laboratory analyzes, expert assessments) remained unchanged, then their optimization component and 

focus undergoes significant changes and continues to result in a number of new developments, in 

particular, united by a common methodology Advance Process Control & Optimization (APC) - an 

improved (or advanced) control system [1]. 

One of the promising approaches to structural-parametric analysis and synthesis of control 

systems for complex technological processes and industries is the control technology using predictable 

models, which provides the relative simplicity of the basic feedback formation scheme and allows you 

to control multidimensional and multi-connected objects in real time under risk and uncertainty of 

external and internal information. In this regard, the complex scientific and technical problem of 

implementing the methodology of ARS-systems of advanced control for decision-making in the 

context of operational and predictive control of complex technological processes and industries using 

the example of industrial installations for the catalytic cracking of oil is undoubtedly relevant and in 

demand. 

Currently, catalytic cracking is the largest and most important of the catalytic oil refining 

processes. This process was widely developed in the USA and in the countries of Western Europe. The 

total capacity of catalytic cracking units in the USA reached about 35% of the capacity of primary oil 

refining, 13.9% - in Western Europe and 6.0% - in Russia. Theoretical foundations, process 

technology, modern schemes and hardware design of catalytic cracking units are presented in the 

works of Smirdovich E.A., Bondarenko B.I., Sukhanov V.P., Melnikov V.B., Khairudinov I.R., 

Glagolev O. F., Ishmiyarova M.Kh. ... The issues of control of catalytic cracking units, mathematical 
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modeling, optimization and operational dispatch control of the processes occurring in the reactor block 

are considered in the works of Serebryansky A.Ya., Mett A.Yu., the study of the process of 

regeneration of coked catalyst after cracking and its modeling are considered in Massagutova R.M. 

The technological mode of cracking depends on the characteristics of raw materials and 

catalyst, atmospheric air, etc., not all of which can be measured or measured in laboratory conditions, 

which leads to the need to use expert experience as part of automation control systems for installations. 

The technological process is subject to strict restrictions on the range of values of temperature, 

concentration and pressure in the apparatus of the reactor block. One of the ways to use the experience 

of the operational dispatching personnel is to use the mathematical apparatus of the theory of fuzzy 

sets for the algorithmization of control decision-making problems [2]. 

In recent decades, a number of works have been published (Aliev R.A., Yusupbekov N.R., 

Azeem MF, Osoffsan PB, Taskin H., Vyalykh I.A., Shumikhin A.G., Abdullaev A.R., Verevkin A. P., 

Akhmetov S.A., Anisimov I.V., Dokuchaev E.S.) using the methods of the theory of artificial 

intelligence in the control algorithms of the catalytic cracking reactor block. At the Perm National 

Research Polytechnic University, Vyalykh I.V. A dissertation work was carried out on the 

development of algorithms for intellectualization of the technological process control system of the 

reactor block of a catalytic cracking unit for vacuum gas oil based on fuzzy production models of the 

presented expert knowledge with automatically generated membership functions for the values of 

linguistic variables in conditions of incomplete information. 

An analysis of the degree of knowledge of the problem indicates the relevance of the problem 

of developing adaptive algorithms that allow the control system to track the current technological 

situation and make control decisions, forming control actions that effectively compensate for 

uncontrollable disturbances. There is a growing demand for further intellectualization of support 

systems for decisions made in operational-predictive control in order to improve the quality of their 

functioning and ensure energy and resource conservation. 

 

2. Modeling and control of the oil catalytic cracking process 

Recently, in order to ensure high economic efficiency of control of complex technological 

complexes and installations, there is a merger of automated control systems for technological 

processes (ACSTP) and production (ACSP) into unified integrated information control systems (ICS) 

of an organizational and technological type (APCS). The most important links of such systems are 

automated operational dispatch control systems (AODCS), which carry out operational control of 

complex technological processes and industries, transforming control decisions of the upper control 

level into technological ones and solving the problems of predicting the course of production 

processes, and the decision maker (DM), on based on predictive information, it has the ability to 

effectively implement control actions [3]. 

Further progress of the catalytic cracking process is associated with the involvement of heavy 

vacuum distillates of fuel oils and other oil residues as feedstock for the production of high-octane 

gasoline fractions, as well as with the implementation of ARS-systems of advanced control and the 

development of adaptive algorithms for predictive control that allow control systems to track the 

current technological situation and form control actions adequate to it, compensating for 

uncontrollable disturbances. A two-level system for intelligent control of the catalytic cracking process 

is proposed, which includes a level of decision-making to maintain an optimal static regime and a level 

of control over the dynamics of the catalytic cracking process based on a neuro fuzzy genetic based 

approach. Fuzzy control algorithms and their computer implementation have been brought to a form 

that allows them to be integrated using the OPC DA (Ole for Process Control Data Access) protocol 

and to be applied in an operating information control system in supervisory or automatic mode. 

Predicting the future performance of a technological object and determining the optimal value 

of the control action are two computationally complex procedures that the predictive controller has to 

deal with within the same sampling rate. This is one of the main reasons that this type of regulator is 
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mainly used for slow processes. To overcome this drawback of predictive controllers (predictable logic 

controllers), it is necessary to develop ways to facilitate the calculation procedure in modeling and 

optimization of the control object [4]. 

In this regard, the presented work is aimed at developing algorithms for the functioning of 

predictive controllers based on neuro-fuzzy models with a reduced number of fuzzy rules and having a 

small number of tuning parameters. The goal is formulated - the development of a distributed model of 

neuro-fuzzy forecasting with the Takagi-Sugeno deduction mechanism with an optimized number of 

fuzzy rules suitable for predictive control purposes.  

The first input layer of the model is nonparametric and reflects the distribution of the input 

signals. The second layer of the predictive model is parametric and performs the blur operation using 

Gaussian helper functions described by the following relationship: 
2
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Fig. 1. Neuro-fuzzy structure of the hybrid model of the research object. 

 

At the third level, the mathematical model is a kind of rule generator, since its fuzzy logical 

rules are formed in the following form: 
(N) (N) (N)
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(N) (N)
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R :if x (k + j)is X and x (k + j)is X ...

if x (k + j)is X then f (k +1)
                    (2) 

The last two layers of the model are nonparametric and form a diffuse outflow mechanism. At 

the fourth level, the operation is carried out using the weighted average work:      
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At the fifth level, a decision is made to determine the value of the output quantity using the 

expression: 
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To determine the control effect in the optimizer, an iterative optimization algorithm is solved 

from the first line. The standard quadratic generalized predict control target was used, assuming no 

constraints. The target criterion has been transformed into a matrix: 

𝐽[𝑘, 𝑈(𝑘)] = [𝑅(𝑘) − 𝑌̂(𝑘)𝑇[𝑅(𝑘) − 𝑌̂(𝑘)] + 𝜆𝑈̃(𝑘)𝑇𝑈̃(𝑘)                (5) 

Minimization of the generalized predict control criterion is based on calculating the gradient 

vector of the objective function in the 𝑘 th relative to the predicted values of the control action: 

, ,..., .
(k 1) (k 1) (k 1)u

J[k,U(k)] J[k,U(k)] J[k,U(k)]
J[k,U(k)]=

u u N

   
  

       
         (6) 

Depending on the matrix equation, the elements of the gradient vector can be represented as 

follows: 

ˆ ˆ
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From this expression it follows that it is necessary to calculate two groups of partial derivatives. 

The first group of derivatives can be written as the following matrix: 
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The second group of derivatives is given by the matrix:                                                            
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Once the individual elements of the gradient have been calculated, they are assimilated to zero. 

As a result, a new system of equations appeared, which can be solved taking into account the control 

effects 𝑢(𝑘), 𝑢(𝑘 + 1), .., 𝑢(𝑘 + 𝑁𝑢 + 1):  
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This system of equations can be solved very simply, starting with the last equation from which 

the control action 𝛥𝑢(𝑘 + 𝑁𝑢 − 1) is calculated. The resulting value is replaced in the previous 

equation and determines 𝛥𝑢(𝑘 + 𝑁𝑢 − 2).  The whole sequence of control actions of control within 
the control horizon is calculated in a similar way [5]. 

For the neuro-fuzzy generalized predictive controller described above, it is customary to have 

four inputs, and each of them should be blurred using three Gaussian sets. One of its main drawbacks 

is the large number of fuzzy rules under which the forecasting model works. The number of these rules 

is determined by the expression 𝑁 =  𝑚𝑝 and, therefore, in this case, the number of rules is 81. This 
means that during training, this model has parameters, which makes it practically unsuitable for 

working in real time, especially for processes with rapidly changing dynamics. Therefore, it is 

necessary to look for new nonlinear neuro-fuzzy models that work with a reduced number of fuzzy 

rules and at the same time provide high prediction accuracy. In addition to the model, the performance 

of this slider can be improved by incorporating 2nd row gradient algorithms in the optimizer. 

Corresponding adjustment can also affect the control quality of the nonlinear neuro-fuzzy general 

predictive controller.  A two-level decision-making system for the selection of current technological 

modes and control of technological parameters of a catalytic cracking unit is based on soft computing 

technology [6,7]. 

The first level is intended to determine the degree of conversion of raw materials, determined 

by the value of the ratio of gas consumption to gasoline (𝑥1), the total depth of gasoline and gas 

extraction as a percentage of raw materials (𝑥2), the qualitative characteristics of the raw materials, i.e. 

percentage of distillation up to 350оС (𝑥3) and the degree of coking of the catalyst (𝑥4) of such values 

of the temperature of the middle of the reactor (𝑦1), the circulation rate of the catalyst (𝑦2) and the 

weight rate of the feedstock (𝑦3), which ensure the achievement of a close to optimal total yield of the 
target products of the installation. For this, the values of the initial boiling point of the raw material, 

coking of the catalyst and the aforementioned controlled parameters, output products of the 

installation, etc., measured by them and determined in the laboratory, are sent to the database (DB) of 

the system, where information about the state of the installation is stored. The central node is a fuzzy 

knowledge base (FKB), which is a set of cause-and-effect relationships between the input parameters 

of the installation 𝑥𝑖 , 𝑖 = 1,4̅̅ ̅̅  and the control parameters 𝑦𝑖 , 𝑖 = 1,3̅̅ ̅̅  formalized as products with a 

design “IF ..., THEN ... ELSE”. The current values 𝑥𝑖 , 𝑖 = 1,4̅̅ ̅̅  from the database, after fuzzification in 
block F, are sent to the FKB. On the basis of this information, the inference block (IB), intended for 

making decisions on the installation mode, determines the current values 𝑦𝑖 , 𝑖 = 1,3̅̅ ̅̅ . These values are 

the tasks for the automatic control systems (ACS) of the reactor temperature, the catalyst circulation 

rate and the weight velocity of the feedstock. After defuzzification in the DF block, they are 

transmitted as a task 𝑔𝑦1,𝑔𝑦2,𝑔𝑦3
 to the above control systems.Thus, the first level of the system 

provides in real time a close to optimal static mode of the installation according to the criterion of 

maximizing the total selection of the target products of the installation. It is shown that its dynamics 

varies within wide limits, in particular, the transfer coefficient along the reactor temperature control 

channel can vary within 0.6-10°C/t/u, the delay time is within 2𝑚𝑖𝑛 ≤ 𝑡 ≤ 3,4𝑚𝑖𝑛. 

The input influences of the object 𝑈1 (regenerator temperature), 𝑈2 (catalyst consumption), 𝑈3 
(raw material consumption), arriving at the input of the object, are simultaneously fed to the neural 

identifier, at the output of which the values of the controlled parameters 𝑦𝑖
𝑈, 𝑖 = 1,3̅̅ ̅̅ . These values of 

the outputs of the neural identifier are compared with the current values of the corresponding outputs 

of the object 𝑦𝑖, 𝑖 = 1,3̅̅ ̅̅ . The obtained predicted errors 𝑒𝑦1

𝑝𝑟 = 𝑔𝑦1
− 𝑦𝑖

𝑈, 𝑖 = 1,3̅̅ ̅̅  serve as information 

for training the neural network of the identifier in the "off-line" mode. 

After training the identifier, it is necessary to read the predicted (predictive) values of the object 

outputs 𝑦𝑖
𝑝𝑟

= 𝑦𝑖
𝑈, 𝑖 = 1,3̅̅ ̅̅ , which are compared with the regime values obtained at the first level of the 

system, i.e. controlled parameters 𝑔𝑦𝑖
, 𝑖 = 1,3̅̅ ̅̅ . The received errors 𝑒𝑦1

𝑝𝑟
= 𝑔𝑦1

− 𝑦𝑖
𝑈, 𝑖 = 1,3̅̅ ̅̅  serve as 

information for training in the "on-line" mode of the neuro-fuzzy multidimensional controller. In order 
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to compensate for the residual errors of the predicative system and ensure the stability of the 

synthesized control system, the object is closed by feedback on the current values of its outputs, which 

𝑦𝑖 , 𝑖 = 1,3̅̅ ̅̅  are compared with their specified values and errors 𝑒𝑦1

𝑝𝑟 = 𝑔𝑦1
− 𝑦𝑖

𝑈, 𝑖 = 1,3̅̅ ̅̅  after 

defuzzification are fed to the multidimensional neuro-fuzzy controller. After defuzzification, the 

control parameters calculated on the basis of fuzzy “IF ..., THEN” rules are sent to the actuators in the 

form of clear signals. 

 

Conclusion 

Within the framework of the methodology for creating Advanced Process Control Systems 

APC - advanced control systems, an approach is proposed to the implementation of decision support 

systems for operational predictive control of complex technological processes, based on soft 

computing technology and neuro-fuzzy models of short-term operational prediction with the Takagi-

Sugeno mechanism and in in the form of a two-level hierarchical structure. At the first level of the 

control hierarchy, it is proposed to solve the problem of determining the quasi-optimal or rational 

technological mode of a statically investigated object on the basis of its fuzzy production mathematical 

model. At the second stage of the hierarchy of operational-predictive control, the problems of 

predictive control of the parameters of the catalytic cracking of oil are solved taking into account its 

changing dynamic characteristics. Computer simulation of the proposed system of operational and 

predictive control of the catalytic cracking of oil as a whole and its individual units and blocks has 

been carried out, and its software implementation has been carried out with reduced computational 

complexity. 
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