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Abstract: Algorithms for the formation of a procedure for 

the stable estimation of parameters matrices and covariances 

of perturbation vectors in indefinite dynamic systems based 

on the concepts of matrix pseudo-inversion are given. For 

stable pseudo-inversion, the matrix partitioning method is 

used using simplified regularization. The above algorithms 

allow for a stable estimation of the matrix of parameters and 

covariances of the perturbation vectors in dynamic systems 

and thereby increase the accuracy of adaptive control 

systems operating in parametric and signal uncertainty 

conditions. 
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I. Introduction 

The problem of estimating parameters and 

linear parametric functions in a multidimensional 

linear indefinite stochastic model becomes very 

important. The practical importance of such 

models is justified in [1-6], which also contains 

further references. The indefinite-stochastic model 

of observation considered in the article is very 

general and covers very widespread cases when 

models with uncertain parameters and uncertain 

limited disturbances contained in certain sets are 

investigated. 

When implementing the above algorithms for 

solving the considered problem, situations arise 

when the matrix of observations for estimating 

model parameters can be ill-conditioned. This 

circumstance predetermines the need for the use of 

regularization methods [7-10]. Below is a regular 

algorithm for calculating the dynamics and control 

matrices in the indefinite-stochastic model of an 

object. 

 

II. Formulation of the problem 

Will consider the indefinite dynamic system 

described by the following equation: 

...,2,1,1   kBuAxx kkkk  ,   (1) 

where kx  – state vector dimension - n, ku  – vector 

of input signals of dimension - m, k  – vector of 

unmeasured Gaussian random perturbations with 

0)( kM  ; matrices A  and B  are unknown. 

Random vectors ,...2,1, kk  represent the vector 

white noise with 0)( iM   and the unknown 

covariance matrix V: 

VM ik
T

ki  )(  for all ki, , 

wherein 





q

i
iiVvV

1

, 

where 
qT

q Rvvv  N),...,( 1 , at that, the set N  

of all possible column vectors v  is determined by 

the only condition: V>0. 

Following [11], columns kz  of height mn  

will be represented by expressions 
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where nI  is the unit matrix of order п, 0 is a row 

of m zeros, and   – is the sign of Kronecker's 

multiplication of matrices, ,...2,1k . 

We write )( mnnnN  -matrix W  in the form: 
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We introduce the notation: },...,{ 1 NXXX  , 

},...,{ 1 N  . 

The relationship between X and   is written in 

the form 

 WX
~

, 

where matrix W
~

 is obtained from matrix W , 

defined by (2) - (4), replacing )1( kx  with 

)1( kX , 
T

imiini
i bbaa  11
)(  , mni  ,...,1 , 

Ti)(  – i-th row of the block matrix  BA . 

The covariance matrix K  can be represented 

as: 

VIK n  . 

Since V is nondegenerate, K  – is also 

nondegenerate and 
11   VIK n .  (5) 

Based on (3) - (5) you can write 
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Then 

))(()( 11
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T
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T
kmn IVzIzIV 


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  . 

Based on (3), you can write  

)( 11
mnkk IVWWV 

  . 

From here, from (4), (5), we obtain 

)( 11
mnIVWWK 

  , 

and therefore 
T

mn
T WIVKW )( 11


  .  (6) 

Thus, for a given matrix 



q

i
iiVvV

1

, the 

maximum likelihood estimate ̂  of the parameter 

vector   is obtained by minimizing   functions 

)()()( 1  WxKWx T  
, 

where 
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must satisfy the equation 

xKWWKW TT 11 ˆ   . 

Taking into account (6) you can write 

xWIVWWIV T
mn

T
mn )(ˆ)( 11





   . 

But due to the nondegeneracy of the matrix 

mnIV 
 1

, the last equation is equivalent to 

xWWW TT ̂ .   (7) 

Equation (7) with respect to estimating the 

vector of parameters according to (3) and (4) can 

be represented as [11]: 
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,...,1,̂ . 

Considering that the lines 
TT N )()1( ,...,  make 

up the matrix  BA , these equations will be 

reduced to the matrix equation 
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,...,1,ˆˆ ,  (8) 

where kz  is defined in (2). 

Entering the nk -matrix 

  ,...2,1,21  kxxxX
T

kk  , 

and )( mnk  - matrices 
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equation (8) with respect to the estimate  BA ˆˆ  

we write in the form 
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Compared with equation (7) with respect to ̂ , 

equation (9) with respect to  BA ˆˆ  has the 

advantage [11] that the square matrix N
T
N ZZ  

included in it has an order of mn , n times 

smaller than the order of )( mnn   square matrix 

WWT  in equation (7). 

 

III. Solution of the task 

If matrix N
T
N ZZ  has mn  linearly independent 

columns, then equation (9) has a unique solution 

  N
T
NN

T
N XZZZBA 1)(ˆˆ  .       (10) 

Square matrix N
T
NZZ  ( 0N

T
NZZ ) is divided 

into blocks 
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For the inversion of the matrix N
T
NZZ  in (10), it 

is advisable to use the Frobenius formula [12,13]. 

If R – is a nondegenerate square matrix ( 0R ), 

you can write 
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where 

URUSH T 1 . 

If 0S , then we can come to the expression of 

the form [13]: 
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where 
TUUSRF 1 . 

At )( mnnN  , equation (9) has infinitely 

many solutions. We will take the decision  BA ˆˆ  

  NNN
T
NN

T
N XZXZZZBA   )(ˆˆ    (13) 

c minimum rate    )(ˆˆ BBAAtrBA TT  , 

mnZrankZ N
T
N  .  

Direct use of relation (13) can lead to a decrease 

in the accuracy of estimation of matrices  BA ˆˆ , 

since they use the pseudo-reversal operation. In the 

case when matrix N
T
N ZZ  is a matrix of not full 

rank, then the problem in question is incorrectly 

posed. To impart numerical stability to the pseudo-

inversion procedure of matrix N
T
N ZZ , here it is 

advisable to use the concepts of regular methods 

[7,8,14,15]. 

For pseudo-matrix N
T
NZZ  in (13) will use the 

block partition matrices [16]. Let R in (11) be a 

non-singular matrix and 
N

T
N ZZR rr  . 

Then URUS T 1  [13], and therefore 
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Therefore 
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Using formulas  
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can write 
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To give greater numerical stability in the 

implementation of the pseudo-matrix algorithm 

(14), it is advisable to present it in the form: 

)()()()( URDRgPg
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T
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

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
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where  
TT UURRP  , 
TT UURRD  , 

1)()(  IPPg  , 

1)()(  IDDg  ,  

0,0    – regularization parameters. 

Selection regularization parameters   and   

in (15) is advisable exercise  carried out on the 

basis of model examples models [17]. 

The empirical covariance matrix of the 

perturbation vector can be calculated based on the 

estimates of Â  and B̂  as follows [11,18]: 


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IV. Conclusion 

The above algorithms allow one to produced a 

stable estimation of the matrixes of parameters and 

covariances of the perturbation vectors in uncertain 

dynamic systems and thereby increase the accuracy 

of the adaptive control system. 
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