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Abstract: Algorithms for the formation of a procedure for
the stable estimation of parameters matrices and covariances
of perturbation vectors in indefinite dynamic systems based
on the concepts of matrix pseudo-inversion are given. For
stable pseudo-inversion, the matrix partitioning method is
used using simplified regularization. The above algorithms
allow for a stable estimation of the matrix of parameters and
covariances of the perturbation vectors in dynamic systems
and thereby increase the accuracy of adaptive control
systems operating in parametric and signal uncertainty
conditions.
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I. Introduction

The problem of estimating parameters and
linear parametric functions in a multidimensional
linear indefinite stochastic model becomes very
important. The practical importance of such
models is justified in [1-6], which also contains
further references. The indefinite-stochastic model
of observation considered in the article is very
general and covers very widespread cases when
models with uncertain parameters and uncertain
limited disturbances contained in certain sets are
investigated.

When implementing the above algorithms for
solving the considered problem, situations arise
when the matrix of observations for estimating
model parameters can be ill-conditioned. This
circumstance predetermines the need for the use of
regularization methods [7-10]. Below is a regular

algorithm for calculating the dynamics and control
matrices in the indefinite-stochastic model of an
object.

I1. Formulation of the problem
Will consider the indefinite dynamic system
described by the following equation:

Xk =AXk_1+BUk+§k, k=1,2,..., (1)

where X, — state vector dimension - n, U, — vector
of input signals of dimension - m, &, — vector of

unmeasured Gaussian random perturbations with
M(&)=0; matrices A and B are unknown.

Random vectors &, K=12,... represent the vector

white noise with M(g)=0 and the unknown
covariance matrix V:

M(gg )" =6,V forall ik,
wherein

q
i=1

where v=(v,..,V,)" eN <RY, at that, the set N

of all possible column vectors V is determined by
the only condition: V>0.

Following [11], columns Z, of height N+ M
will be represented by expressions



mailto:ihz_tstu@gmail.ru
mailto:uktammamirov@gmail.com

CHEMICAL TECHNOLOGY. CONTROL AND MANAGEMENT.

Special issue Ne4-5/2018

7, = [.’.('f.:l} k=12... (2

Uy
and make block nxn(n+m)-matrix type
7 0 ... 0]
0 z, : .
W= . | 0 =1,®z7,, (3)
10 0 .. z|

where |, is the unit matrix of order n, 0 is a row

of m zeros, and ® - is the sign of Kronecker's
multiplication of matrices, k =1,2,....

We write nN xn(n+m)-matrix W in the form:

W] [1, @27
Wl [1,®2; |
We introduce the notation: X ={Xj,..., X}
(9:{81,,€N}

The relationship between X and 7 is written in
the form

X :Wy+g,
where matrix W is obtained from matrix W,
defined by (2) - (4), replacing x(k-1) with
X(k _1) ) }/(I) :”ail"'ain bil"'bim”T 1 | :1,...,n+m1

;/(i)T —i-th row of the block matrix [A : B].

The covariance matrix K can be represented
as:

K=1,&®V.
Since V is nondegenerate, K —is also
nondegenerate and
Kt=1,®V™ (5)
Based on (3) - (5) you can write
Voilhin ®7)
iy = |V o ®2)

V7 (m ® )

Then
V71(|n+m ®ZI) =(I, ®ZI)(V71® lem) -
Based on (3), you can write
Vi]VVk =W, (Vil Ol m)-
From here, from (4), (5), we obtain
KW=wWV'®l,,),
and therefore
WKT=v'®l W' (6)

g
Thus, for a given matrix V=) vV, the
i=1
maximum likelihood estimate > of the parameter
vector ) is obtained by minimizing ) functions

O(y) = (Xx=Wy) K™ (x=Wy),

-1
q
where K‘lz{ln(@zvivi} and, therefore [11],
=

must satisfy the equation
WTKW5 =WTK™x,
Taking into account (6) you can write
(V_l ® |n+m)WTW7; = (V_l ® In+m)\NTX-
But due to the nondegeneracy of the matrix
V®I,, ., the last equation is equivalent to
WTWyp =W'x, @)
Equation (7) with respect to estimating the

vector of parameters according to (3) and (4) can
be represented as [11]:

N N
T, AT T .

DL =) LXKy, =10,

k=1 k=1

Considering that the lines 7@ ,...»™" make
up the matrix [A | B], these equations will be
reduced to the matrix equation

N . N _
kZZEZk[Af B]:kZzIxi,k, i=1..,n, (8)
=1 =1

where Z, is defined in (2).
Entering the K x n-matrix
Xe=[X 1% i i, k=12,..,
and k x (n+m)- matrices
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. T
Xo t X4 ¢ .. x
Zkz{-o Lok l} , k=12,...
Uy ,u2 beeet Uy
equation (8) with respect to the estimate [A é]
we write in the form
ZLZN[AE é] =ZL Xy )
where

X
=7
N

XnZy _|:Zxkxk =] Zxkuk}
Compared with equation (7) with respect to 7>,
equation (9) with respect to [A é] has the
advantage [11] that the square matrix ZI,ZN

included in it has an order of N+M, n times
smaller than the order of n(n+m) square matrix

wTWw in equation (7).

I11. Solution of the task
If matrix Z\Z, has N+M linearly independent
columns, then equation (9) has a unique solution

[A é] =(ZI,ZN)_1ZI,XN. (10)
Square matrix ZjZy (|zhzy|=0) is divided

Ty R iU
NN UT‘S’

into blocks
(11)

where

For the inversion of the matrix Z\Z, in (10), it
is advisable to use the Frobenius formula [12,13].

If R — is a nondegenerate square matrix (|R|=0),
you can write

(ZhzZy) ' =
RM+RAUHMTR [ —RUH* | (12)
—HWTR? L HT

where
H=S-U'R'U.
If |S[#0, then we can come to the expression of
the form [13]:

F' . —Flyst
AVARE 1
@z { SWIFisTysUTF bs—l}
where
F=R-USWU'.

At N <n(n+m), equation (9) has infinitely

many solutions. We will take the decision [A é]

[A 18] =@z zixy =zixy (19

c minimum rate [[A§ B]] = Jtr(ATA+BTB),
rankZy,Z, <n+m.

Direct use of relation (13) can lead to a decrease

in the accuracy of estimation of matrices [A é] ,
since they use the pseudo-reversal operation. In the

case when matrix Z\Z, is a matrix of not full

rank, then the problem in question is incorrectly
posed. To impart numerical stability to the pseudo-

inversion procedure of matrix ZLZN, here it is

advisable to use the concepts of regular methods
[7,8,14,15].

For pseudo-matrix ZI,ZN in (13) will use the

block partition matrices [16]. Let R in (11) be a
non-singular matrix and ry =r
N4N

Then s =UTR™U [13], and therefore
T R -1
AW ={UT}R (R U),
R _
ZWZy :[U'T'}(I R™U),

(I RU)=R*R V).
Therefore
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R +
(Z}24)" =R u>*(Rl>{Uf} -

=(R U)" R[URT} :
Using formulas
Ur=U'u)*u’
and
(UT)+ :U(UTU)—l
can write

T + R T T —1><
Z1zy) _{UT}(RR +uu”) w

xR(RTR+UUN)HRT U).
To give greater numerical stability in the
implementation of the pseudo-matrix algorithm
(14), it is advisable to present it in the form:

R
(ZNZy) = |:UTi| 9. (P)Rg4(D)(R" U),(15)

where
P=RR" +UUT,
D=R'R+UUT,
9,(P)=(P+al)™,

g5(D)=(D+A1)7",
a >0, B >0 —regularization parameters.

Selection regularization parameters & and g
in (15) is advisable exercise carried out on the
basis of model examples models [17].

The empirical covariance matrix of the
perturbation vector can be calculated based on the
estimates of A and B as follows [11,18]:

N
% (X — Axk—l - éuk)(xk - Axk—l - éuk)T '

k=1

IV. Conclusion

The above algorithms allow one to produced a
stable estimation of the matrixes of parameters and
covariances of the perturbation vectors in uncertain
dynamic systems and thereby increase the accuracy
of the adaptive control system.

REFERENCES

1. Afanasyev V.N. Manage undefined dynamic objects. -
M.: Fizmatlit, 2008. - 208 p.

2. Nikiforov V.0O., Ushakov A.V. Management in
conditions of uncertainty: sensitivity, adaptation,
robustness. - SPbh: SPb HITMO, 2002. -232p.

3. lgamberdiev H.Z., Yusupbekov A.N., Zaripov O.O.
Regular methods of estimating and managing dynamic
objects in conditions of uncertainty. - T.: Tashkent State
Technical University, 2012. -320 p.

4. Pankov A.R., Semenikhin K.VV. Minimax ldentification
of Uncertainly Stochastic Linear Model // A and T.
1998. Nel 1. -C. 158-171.

5. Kurzhansky A.B., Identification Problem: Theory of
Guarantee Estimates (Review) // A and T. 1991. Ne 4. -
C. 3-26.

6. Lidov M.L., Bakhshiyan B.Ts., Matasov A.l. On One
Direction in the Problem of Guaranteeing Assessment
(Review), Space Research. 1991. T. 29. Ne5. -C. 659—
684.

7. Tikhonov A.N., Arsenin V.Y. Methods of solving
incorrect problems., -M.: Nauka, 1986. —288 p.

8. Morozov V.A. Methods for solving incorrectly posed
problems. — Springer Science & Business Media, 2012.

9. Householder A.S. The theory of matrices in numerical
analysis. — Courier Corporation, 2013.

10.MacDuffee C.C. The theory of matrices. — Courier
Corporation, 2004.

11.Sysoev L.P. Estimating matrixes of parameters and
covariances of perturbation vectors in multidimensional
dynamical systems with discrete time with a special
structure of unknown covariance matrices // A and T.
2010. Ne2, 2010. —C. 192-206.

12.Verzhbitsky V.M. Computational linear algebra. —M.:
Higher. school, 2009. —-351 p.

13.Gantmakher F. R. The theory of matrices. — American
Mathematical Soc., 2000. — T. 131.

14.Vasin V.V., Ageev A.L. Invalid problems with a priori
information. Ekaterinburg, Science, 1993.

15.Zhdanov A.l. Introduction to methods for solving ill-
posed problems: -Ed. Samara State. Aerospace
University, 2006. —87 p.

16.Golub, Gene H., and Charles F. Van Loan. Matrix
computations. Vol. 3. JHU Press, 2012,

17.Verlan A. F., Sizikov V. S. Integral equations: methods,
algorithms, programs //Naukova Dumka, Kiev. — 1986.
—T.543.

Pankov A.R., Semenikhin K.V. Methods of parametric
identification of multidimensional linear models under
conditions of a priori uncertainty // Avtomat. and
Telemekh., 2000. Ne 5. -C.76-92.

19



