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Abstract: Stable algorithms for the formation of control 

actions in local-optimal adaptive control systems for 

dynamic objects are given. Considering that the initial 

equations for estimating the parameters of an object and a 

control device, as a rule, are ill-conditioned, it becomes 

necessary to use regular methods. The stable algorithms for 

finding the desired solutions based on the methods of the 

minimum pseudoinverse matrix and singular decomposition, 

which contribute to improving the accuracy of the formation 

of control actions, are given. 

Key words: closed-loop control system, local-optimal 
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I. Introduction 

The main problem of parametric optimization 

consists in determining the parameters of the 

control algorithm from the condition of minimizing 

the chosen quality criterion [1-5]. Complex and 

time-consuming is the solution of the problem of 

parametric optimization for multimode objects or 

objects with slowly varying parameters when the 

rate of change of the parameters of the object is 

small and on the optimization interval they can be 

considered constant. The problem of parametric 

optimization can be reconciled with the general 

problem of synthesis of an adaptive control system 

[2,4,6]. In this case, both theoretical methods and 

numerical procedures are used to solve the 

problem of parametric optimization. 

In the theoretical approach, adaptive control 

algorithms are defined, in which the parameters are 

functions of the coefficients of the mathematical 

model of the control object or depend on their 

specific relationships [4-7]. 

When using the second approach to the solution 

of the problem of parametric optimization, the 

control algorithm is known, and by modeling, the 

necessary ranges of the parameters of the control 

algorithm are determined, and on the basis of these 

results, functions for the adjustment of the 

parameters of the control algorithm are 

constructed. However, only a suboptimal solution 

can be obtained here [6-8]. 

Recursion algorithms [9-11] are most often used 

to estimate the coefficients of equations from 

observable data, allowing identification in the 

normal operation mode of the object. The control 

of the object leads to the degeneration of the 

information matrix and thereby prevents the 

identification of the object or the required optimal 

control law, determined by the identifiable 

parameters of the object. 

There are various approaches to solving this 

problem. To prevent unidentifiability, various 

methods were proposed [7,10]: the addition of 

noise to the controller, the inclusion of several 

controllers in the control system and their 

connection by some algorithm, and others. 

In [7,12] the general form of control as a 

function of unknown parameters of a linear object 

is given, for which the problem of identifiability is 

removed in the sense that the nonidentifiability of 
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the parameters of the object does not entail the 

unidentifiability of the required control. It is shown 

[7] that locally optimal control belongs to this 

species. In this connection, the identifiability of the 

optimal control law takes place in locally optimal 

control systems. 

 

II. Formulation of the problem 

Very often, when synthesizing a regulator in 

closed systems, methods of locally optimal 

adaptive control are used [5, 8, 12, 13]. Consider a 

linear control object described by equation  

11   tttt wBuAxx ,    (1) 

where 
n

t Rx   – is the measured state, }{ tw  – is 

uncontrolled independent random perturbations 

satisfying condition  

QwEwEw T
ttt  ,0 , 

A  and B  are unknown matrices of dimension 

nn  and mn . 

We take the control law in the form  

tt
T

t xu )( , 

where )(  is the given matrix function, and t  

is the current estimate of the matrix  BAT  , 

obtained from the relations  

11   tt
T

t w , 

where   is an unknown matrix of dimension 

nn  ; 
n

t R  and 
n

t R  are the vectors 

available to the measurement. 

We define the sequence of estimations of 

matrices   according to the method of least 

squares on the basis of the recurrence relation [12]:  

 Tt
T
tttttt  


 1
1
11  , 

where 0  is an arbitrary matrix of dimension 

nn  , and the matrix 1t  has the form  

0, 01  

T

tttt ,  

  11,,   tt
T
t

T
t

T
t xux  . 

Then the limiting law of control will be 

determined by the expression [7,9]  

t

T

t xBAu ),( , 

 )()(),( 1 ASHBHBA TTTT   .     (2) 

The control law (2) minimizes the conditional 

mathematical expectation of the value along the 

trajectory (1) of the objective function  

)()()( 11111



  tt

T

ttt xxCxxxV , 

while the nonnegative definite matrix TCC   

satisfies the equality CBH  , and 


1tx  – is the 

state value of the reference trajectory determined 

by equation t

T

t xSx 



1 , and at 0S  control (2) 

will coincide with locally optimal control. 

Also consider the control object specified in the 

form  

1
1

1
1 )()( 




  ttt wuzByzA ,       (3) 

where 
l

t Ry   - measured outputs, 
m

t Ru   - 

control. 

We introduce the following notation  

),...,,...,,( )0()1()1()( BBAA nnT  , 

)...,,,...,,( 11
T
t

T
nt

T
t

T
nt

T
t uuyy  , 

where 11   tt y . 

Then, taking into account that  

),...,,,...,,(

,)(

11
T
t

T
nt

T
t

T
nt

T
t

tt
T

t

uuyy

u








 

the locally optimal control law takes the form:  

],)(

...)()(

...)[()(

1
)1()1(

1
)1()1(

1
)()(

)1()1(1)0(














nt
nn

tnt
nn

t
T

t

uDB

uDBySA

ySABHu

  (4) 

where niS i ,1,)(   and 1,1,)(  njD j
 are 

arbitrary matrices of dimension ll   and ml  

respectively, H  –  is the matrix lm  such that 

0det )0( BHT . 

 

III. Solution of the task 

Thus, for the objects described by equations (1) 

and (3), the locally optimal control law is formed 

on the basis of expressions (2) and (4), 

respectively. In expressions (2) and (4), square 

matrices of the form BHG T  and )0()0( BHG T  

are reversed. These matrices can be ill-conditioned, 
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which ultimately leads to the need to construct 

regular algorithms for the formation of the desired 

estimates. 

In addition, in practical problems, elements, for 

example, matrices G , are often known to us 

approximately. In these cases, instead of matrix G

, we are dealing with some other matrix G
~

 such 

that hGG 
~

, where the meaning of the norms 

is usually determined by the nature of the problem. 

Having a matrix G
~

 instead of matrix G , we can 

not make a definite judgment about the degeneracy 

or nondegeneracy of the matrix G . But there are 

infinitely many such matrices G
~

, and within the 

limits of the level of error known to us they are 

indistinguishable. Among such “possible exact 

systems” there may be degenerate ones. 

To impart numerical stability to the inversion 

procedure for matrices G  and )0(G , it is advisable 

to use the concepts of regular and stable estimation 

methods [14–16]. Below is the algorithm for 

estimating the inverse matrix in equation (2), 

taking into account its possible degeneracy. The 

same algorithm can also be used to estimate the 

inverse matrix in equation (4). 

It is known [17,18] that the problem of 

calculating G  is equivalent to solving an extremal 

problem: find *UZ  such that 

}:inf{ *UZIGZIGZ
mmmm




.  (5) 

Solution Z  of problem (5) is unique and 

coincides with G . This allows us to construct an 

algorithm for finding a stable approximation to G  

for a given G
~

 using Tikhonov’s regularization 

method for extremal problems [15] with the choice 

of the regularization parameter according to the 

generalized residual principle. 

We introduce the smoothing functional 

Tikhonov 

.,0,
~

)(][

*2

*

2

2

*

2

UZZIZG

ZZJZM

mm

hh










  (6) 

As is known [14, 15], the minimization 

problem for the quadratic functional (6) in the 

Euclidean space *U  has a unique solution Z
~

. 

Therefore, at 0 , we can define a generalized 

residual 
 


  hh ZChZJ 

*

~
)

~
()( ,  

 

1 constC , ),(  h . 
 

The value h  represents a   approximation to 

the modified incompatibility measure h  [19]: 

},:
~

inf{

}:)(inf{

*

*

*

*

UZZhIZG

UZZhZJ

mm

hh








 

i.e.    hh0 . 

According to [15], equation 0)(   has, 

under condition 
hmm

I 


, a unique solution 

0)(  . As an approximation to the pseudo-

inverse matrix G , we can take the extremal )(

~
Z  

of functional (6) corresponding to parameter 

)(  . Then GZ )(

~
  at 0),(   h . 

A very effective approach for calculating the 

matrix 

hG  is also the algorithm [20], based on the 

method of the minimum pseudoinverse matrix and 

consisting in determining the numbers m ˆ,...,ˆ
1 , 

which is 0ˆ...ˆ
1  m  and 

,)(

;0...:)(inf)ˆ(

1

22

1 1

1
22















 



 

m

k

h
kk

m

k

m

k

mkk

h



 

where mkh
k ,...,2,1,   – given singular numbers 

of the matrix hG . 

Following [20], one can show the validity of 

the following relations: 

,)ˆ(ˆ

ˆˆ

2

1

2
2

22

hDD

VDUVDUGG

m

k

h
kkhh

T
hhh

T
hhhhh









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,

,ˆˆˆ
2222

h

h
T
hhhh

UG

GDUDVG



 

 

 

where 
T
hhhh VDUG ˆˆ   – singular value 

decomposition for the matrix hG , hU  and hV  are 

orthogonal matrices, 

UdiagD mh  ),...,( 1  . 

Then the minimum pseudo-inverse matrix can 

be calculated based on the expression 
T
hhhh UDVG   ˆˆ ,  

where  
*

1 )]ˆ(),...,ˆ([ˆ UdiagD mh   . 

The given algorithms allow stabilizing the 

procedure of forming and developing control 

actions in locally optimal adaptive control systems 

for dynamic objects and improving the quality 

indicators of control processes. 
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