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Qk = ”qij ” cost matrix between the node;

H, = || hij || time distribution function for the formation and disbanding of compounds;
hy = ||h;|| - time vector for formation and disintegration of formulations;
p” - number of program runs.

Let's consider the work of the model on the first
run (i = 1). The software takes into account that in the
network, in addition to transit flows, there are interna
transport flows. These internal threads affect the network
bandwidth. Thus, on each run the capacity matrix c [i, j]
is changed by playing asingle lot of the third type.

Based on the application of the Ford-Falkerson
algorithm, the maximum flux maxflow, the distribution
of the flow in the network f [i, j], is calculated, and the
generalized indicator of the "benefit" of this flux dzy is
determined by formulas (2), (3) and (4). All these values
are stored in the PC database.

And so if i<=pr, then the program continues the
initial calculations. Otherwise (if i> pr), the following
average values are calculated: maxflow maximum flow, f
[i, j] flow distribution, and generalized "benefit" @, on
each run. The following are the bottlenecks in the
network: [i, j] -c [i, j] and in those places where the
matrix takes negative values by the amount of this
difference, the capacity of the matrix c [i, j] increases to
provide rational organization of the railway network
flows.

Conclusion

A simulation model of the transport network has
been developed, taking into account one input and one
output in the network.

Thus, the following particular problems were
solved:

the urgency of using the simulation model is to
study transport network flows;

compilation of lists of input and output parameters
of the simulation model of the railway transport network;

development and implementation of the
simulation of model agorithm;

solution of test problems with the help of
simulation.

Thus, a simulation model of the transport network
was developed and software was implemented. That
implements the model of the railway network.
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Temup HyJ TpaHCIOp OKMMJIAPH YYYH TeMHP
HYJTHY TAIIKKJI STHITHUHT HMHTAIOH MOJe/IapH

Ymby wmakomama Temup UHYn XabapianryBUHH
OyTYH JIOTHCTHK 3amKup OYina0d IOKIApHH ONTHMAI
OoIIKapyBH MacajaJapuHU €4HIl, WYJn XapuTacuuaru
MakcuMall JapaxaJaH oOIIMaWauraH €Kku MHHHMAl
JapakaJaH KaMainO KeTMalauraH aHWK OWp OKHH
IOKJIAIll WIIJIAPUHY PEKACHHY INAKUIAaHTHPHII Ba amaira
OLIUPHUII >KapaSHIAPHHM TALIKWI OHTUII Macajajapu
Kypub yukmirad. byHnas Tamkapu Makoiaza TeMHUpP Wy
TapMOFHAAa MaKCHMall OKHMHH TOIHMII MacalacH Xap
KaHAall TpaHCIOPT TAapMOFUHUHI MAaKCHMal OKHMH
YHUHI MHHUMAaNl YTKa3WII XyCYCHATH TEHT SKaHINUTH
acocmab OepwnraH. Arap OKMM MakcHUMall O¥iica, yHnaa
TapMOKHHHT YTKA3MII XyCYCHATH OKUMHHHT Ky4uTra TeHT
JleTaH TacaBBYp Maiimo Oymumm Ba Oy Teopema Dopn-
dankepcon ANTOPUTMHU KYJUTAaHWIIH Onan
MCOOTJIAaHMIIIN MAKOJIa/la KEITHPUITaH.

Kaaut cy3nap: temup Hynm TapMoFH, MaTepual
Ba ax0opoT okuMH, rpad MozaenH, (popMaIamITHPHUII,
Ty3WIMa, VYTKa3UIl XYCYCHSTH, MAaKCHMal OKHUM,
(dhopmupoBaHue.

Sh.B.Redjepov, S.Uguz, E.Acar

TRIANGULAR VON NEUMANN CELLULAR AUTOMATA OVER GALOIS FIELD GF(2)

The fundamental structure of cellular automata (CA) is a discrete specia dynamical model, but the global behaviors at
many iterative times can be close nearly a continuous mathematical model and system. It is known that CA theory is a very rich and
useful dynamical model by focusing on their local information and neighboring cells. The mathematical view of the basic model
shows the computable values of the mathematical structure of CA. In the present paper, it is investigated the structure of two-
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dimensiona (2D) finite, linear, triangular von Neumann CA with null boundary over Galois field GF(2). In other words, it is

considered on Galoisfield, i.e. 2-state case or Z,. Here we obtain the transition (or information) rule matrices for each specia cases
presented in the paper. As far as we know, there is no structure study of von Neumann 2D linear CA on triangular lattice over GF(2)
in the literature. Due to main CA structures are sufficiently simple to investigate in mathematical ways, we consider that the present

new construction could be applied many areas related to these CA using any other transition rules.
Keywords: Cellular automata, Galois Field, triangular lattice, transition rule matrices.

1. Introduction

Cellular automata theory (CA theory for brevity)
introduced by Ulam and von Neumann [1] in the early
1950s and was systematically studied by Hedlund from
mathematical perspective. One-dimensional (1D) CA has
been investigated to very point of views. On the other
hand a little interest was given to two-dimensional
cellular automata (2D CA). Von Neumann [1] showed
that a cellular automaton could have universal properties.
Due to complexity of CA theory, von Neumann rules
were never studied on a computer language. In the
beginning of 1980s, Wolfram [2] studied in very details
of afamily of smple 1D CA rules and showed that even
these simplest rules are capable of interesting complex
behaviors. Some basic and original mathematical CA
models using matrix algebra over the two states or binary
field which characterize the behavior of 2D nearest
neighborhood linear CA with null and periodic boundary
conditions have been seen in the literature [7, 8, 9, 10,
11]. 2D CA theory has received remarkable interest and
attention in the last few decades [3, 4, 5, 6, 11, 12, 13,
14, 15, 16]. Due to its striking structures, CA theory has
given the opportunity to model and understand many
interesting behaviors in nature easier. Here we study the
theory of two dimensional uniform null boundary von

Neumann triangular CA (2D NB CA) over Galois field
GF(2) (see CA structures and applicationsin Figs. 1-7).

In this paper, we concentrate a special family of
2D finite linear CA with null boundary condition over
Gdois field, i.e., the binary states field Z,. Here, we set
up a specific relation between the structure of these CA
and transition matrix rules of 2D linear CA with null
boundary condition. We determine and study of the
transition rule matrices of this special CA by means of
the matrix algebra theory. It is known that CA nature is
very simple to allow mathematical studies in dynamical
systems, it is believed that these linear CA can be found
many different kind of real life applications. The present
results should produce further to the algebraic
conseguences of these 2D linear CA and relates some
elegant rea life applications found by the authors in the
literature (see detailsin [11, 12, 15, 16, 17]).

The organization of the present paper is
constructed as follows. In Section 2, it is given the
preliminaries of CA theory and the triangular lattice
structures. Section 3 presents the transition rule matrices
for each cases, corresponding to the 2D von Neumann
finite triangular CA. Finaly conclusions are summarized
in Section 4

1,2 1,9

1y

(116) -

4.1

(4,2 (4,4)

VAV “

Figure 1. 2D finite CA configuration on a triangular lattice model

2.Preliminaries and triangular lattice
We study new type of lattice model, i.e. triangular
lattice (see Figs. 1-2), for 2-states finite linear von

Neumann 2D CA. As far as we know, there is no
construction study and methods for von Neumann 2D
CA on triangular lattice over Galois field in the literature
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up to now. Here, we firstly focus on special boundary
condition of 2D von Neumann CA over binary field.
After then we obtain the information rule matrices for
special cases. Considering the neighbors of the extreme
cells, there are two well-known studied neighbor
approaches as below.

1. Null or O-fixed boundary CA (NB): The
borderline cells are connected to the O-state.

2. Periodic boundary CA (PB): The borderline
cells are contiguous to each other periodicaly in the
boundaries.

In the present paper we only deal with null or
fixed (O-th state) valued boundary condition. In other
words, it is said that CA with null boundary case is the

borderline cells in the boundaries are considered as zero-
fixed states. (i.e. The surrounding neighbor cells spin
values are all O-state, check for better understanding in
[7, 15]).

It is also known that the description question of
2D CA configurations can be transformed to the
description of 1D configurations by considering m x n
configurations as mn x 1 type configurations as follows.
To obtain this procedure, it is defined the following map

I Minxn(Z2) = 22 )

that getsthe t'™ state [X,] given by

Figure 3. Von Neumann neighborhoods for the cell X, .4 on the triangular lattice model

X11  X12 X1n
X21  X22 Xan
Xm1 Xm2 Xmn

= (X101, X120 s Xaps oo X 1oy X ) (2

Note that the superscript t indicates the transpose sign. Then the local rules are assumed to act on ZJ** on the

contrary M,,,(Z,). Hence the C® matrix

D)
cCO=( : ..
MO (®)

ml mn

(©)

M yxammao an-Xopaszmuti aenoonapu, Ne 1 (3), mapm 2018

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

SH.B.Redjepov, SUguz, E.Acar. Triangular von neumann cellular automata over galoisfield gf(2) 21

Figure 4. The nearest configurations of 2D finite von Neumann CA for the case: x;; is inside of the
upright triangle neighbors

Figure 5. The nearest configurations of 2D finite von Neumann CA for the case: x;; isinside of the
downright triangle neighbors

is denoted the configuration matrix at time t for 2D finite CA. Using the equation (2), it can be defined as below

®) (t+1)

X11 X11
0) (¢+1)

Xin Xin

(TRule)mnxmn . = . (4)

(t) (t+1)

xml xml
0) (¢+1)

xmn xmn

For analysis and further computation, the each cell states has a spin value which takes in finite or infinite states

set. Here this spin values set is chosen from Galois field GF(2).
Also it is denoted by x{; ), as the spin states of the cell (i, /) at time t + 1 should be denoted by x{; ,” = y{).
Consider the triangular transition configuration or information matrix

® ®)

. X114 e Xip
Cct=
®) ®)

If we combine planar triangular structure with column vectors by converting them from C® to ([X],nx1)” =

GO xO X O xO xOY7T then it can be considered the translation rule matrix Tgy. as follows.
(TRule)mn*mn : [X]mn*l = [Y]mn*l (5)

t t
where ([Y]mnx1)” = 2, 38, o, y 8, v, T
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vt r
Figure 6. Geometrically complex but topologically uniform cellular surface of aroof. Every triangular
surface of the demonstrated buildings has three triangular neighbors

Remark 1. In the literature, the most commonly
used lattice for CA is an orthogonal Z¢ structure, several
studies have been done to test the properties of other
lattice models such as hexagonal (see [11, 12, 15, 18]).
In the present work, we investigate CA studies on a new
type of lattice model, i.e. triangular lattice (see Figs. 1-
8), for 2-state, finite, linear, von Neumann neighborhood.
An important contribution of the present study can be
emphasized that there is no structure investigation for
von Neumann 2D linear CA over Galois field on
triangular lattice in the literature. Also note that we
study von Neumann neighborhood triangular 2D CA
(Figs. 1-5) and also it should be investigated Moore (see
details in [18].) neighborhood 2D CA as a future
direction.

Cellular automata theory can be applied in
congtructing of building envelope (see Fig. 6) and
intelligent skin of a building (see Fig. 7) for any shape
and a certain appearance. An important property that any
3D surface can be triangulated [18]. It meansthat it could
become a grid of topologically identical elements. With
the exception of boundary conditions, every triangle in
the grid has exactly three neighboring triangles (see Figs.
2-3). However it can be possible to control to spin states
values of the whole surface by considering the behavior
of the CA theory [18].

3. The transition rule matrices for von Neumann
2D CA over triangular lattice

In the present paper, it is dealt with special finite
CA for von Neumann neighbors on triangular lattice.
These CA are studied under null (or fixed O-th state)

K M, 0
M, K M,
| 0 M, K
TR DY nxmn = |+ 8 8
0 0
0 0
0O O

here O isthe zero matrix and each sub-matrix isn x n,

R}

boundary condition (NB) with the 2-state spin values, i.e.
over Galois field or Z,. In the present section, we
investigate the transition rule matrix of the triangular
finite null boundary CA.

Note that there are two cases the cell x;;
considering for the von Neumann neighbors.

- If x;; is inside of the upright triangle (see
detailsin Fig. 4) of the von Neumann neighbors, then we
98 Vi) = Hiayy + Xy + Xiy-n (m0d2) (6)

- If x;;is insgde of the downright triangle (see
detailsin Fig. 5) of the von Neumann neighbors, then

) — .0 ® @®)
y(ivj) - x(i,j+1) + x(i+1'j) + x(i,j—l) (m0d2) (7)

where y((z?) €7Z,.

In the next subsection, it will be obtained the
transition rule matrices corresponding to the 2D finite
von Neumann neighborhood CA local rule under null
boundary condition. It has been studied two important
special cases as presented theorems below respectively.

3.1 Rule Matrix (Tg)mnxmn for mOdd and n-
Any Case

Theorem 1. Let m be odd and n any positive
integers and m,n > 3. Then, the transition rule matrix
from (T27.29), s frOM ZI™ to Z7™ which takes the
tt" finite von Neumann CA over triangular lattice
configuration € of order m x n to the (t + 1)** state
€1 under null boundary condition is obtained by

0 0
0 0 \
M, 0 ~ 0 0 |
: : ; )
M, K M, O
0 M, K M,
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0 1 00 00 1 00O 00 0 00O 00
1 010 00 0O 0 0O 00 0 1 00 00
0 1 0 1 0 0 0 010 00 0O 00O 00
K=|0 0 1 O 0O O|,Mq=|0 0 0 O 0O 0O|,My=]0 0 0 1 00
00 0 1 01 00 0 0 0O 00 0 0 10
00 0 010 00 0 0 01 00 0 0 0O
Proof 1. Denote e;; as the matrix of size m x n, considering the von Neumann neighbor (see Figs. 4-5).
then the (i,j) position element is equal to one and the ~ Hence T (g;;) elements equals to a linear summation of
other all entries elements equal to zero. This is well- its three neighbors-elements. If x;; elements positions can

known that the vectors e;; present the standard basis  be different within the triangular lattice, then the border
elements for the matrix space. To establish the transition elements of the location of the x;; cells differ, and hence
rule matrix (TR7299) o mn Structure, it is needed to the bordering components elements of the matrix should
specify the action of (TR1299) nxmn ON the bases &jj be different (see details in Figs. 4-5). Considering the
vectors elements respectively. Firstly, let us take the neighboring relations, these neighbors govern the rule
linear transition T from m x n matrix space structure to structure, then we can observe the bordering relations as
itself. After then, let us relate the transition T with T,.  9iven below. First bordering relation of cell x;; is inside
Also consider e;;, then the images of e;; which is T(e;;)  ©Of the upright triangle (see Fig. 4) corresponding to the
are connected to the three nearest neighbors elements ~ Von Neumann neighbors, then it is obtained

®© _ ® ©
Yy = Xa-1p ¥ X@j+n

+ x;_y) (mod2) 9)
Second bordering relation of cell x;; is inside of the downright triangle (see Fig. 5) corresponding to the von
Neumann neighbors, then we have

® _ 0 © ®
Yijy = X T Xarny T Xij-1) (Mod2) (10)

®)

where, Xijy €2z These bordering relations of the main cell x;; is summarized as follows.

T(eij) =ei—1j*ejr+ €uijrr ¥ €1+ €i1j1+ €1 (Mod2) (11)

Thus, we obtain m,n linear equations and the rule matrix of 2D finite von Neumann CA over triangular
transition of the representation matrix related to the lattice.
linear equations is presented as in theorem. Example 1 Let us consider the case for m = 3,
Here we can give a specific m, n-odd case values n = 3 (see Figs. 1-2). The rule matrix of 2D finite CA
example. We can see better the structure of the transition with von Neumann neighbors rule over the Galois
field GF(2) (i.e. thefield Z,) isfound as follows,

K M, 0
(Thue ™ Doxo = <M1 K Mz)
0 M, K
where K, M4, M are the sub-matrices of order 3 x 3, written as

010 1 00 0 0O
K = (1 0 1>,M1 = (0 0 O), M, = (0 1 O>.
010 0 01 0 0O

For the structure of the transition rule matrix of K M, o O o
2D finite von Neumann CA over triangular lattice, we M, K M, O 0 \
now consider m-odd and n-even case example as (T 50x20 = \o M, K My 0 )
follows. 0O 0 My K M,

Example 2 Let us give the case for m =5, 0O 0 O M, K

n = 4 (see Figs. 1-3). The transition rule matrix of 2D

finite von Neumann CA over triangular lattice over where K, M1, M, are the sub-matrices of order 5 x 4,
Galois field GF(2) (or the field Z;) is given the can be written as follows.

following way.

Myxammao an-Xopasmuii asnoonapu, Ne 1 (3), mapm 2018

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

24 JIACTYPHM BA KOMITBIOTEP HH)KHUHAPHUHI TEXHOJIOTHAJIAPAHUHT 3AMOHABHYI MYAMMOJTAPH

0100 1000 0000
(101 0 (0o 0 0 0 (o 10 0
E=10 10 1/ {001 0/M |00 0 o0

0010 0000 000 1

3.2 Rule Matrix (TR) mnxmn fOr m-Even and (Tm-eveny mn from to ZP"  which takes the t™
n-Any Case finite von Neumann triangular lattice configuration

Theorem 2. Let m be even and n any positive  C® of order m x n to the (t + 1)™ state C(**1) under
integers and m,n > 3. Then the transition rule matrix null boundary by

K M, O O - - 0 O
/M1 K M, O - - 0 O \
| O M, K M O - O O |
(:iaac) MY L A S R A (12)
0O 0 .. O M K M, O
00 -« = O M K M
0O O O O M, K
where O isthe zero matrix and all sub-matrix isn x n. neighbor (see Figs. 4-5). Then T(e;;) elements equals

Proof 2 To obtain the transition rule matrix  to a linear summation of its three neighbors-elements.
(TR Ymnxmn  Structure, it is needed to specify the Considering the neighboring relations, these neighbors
action of (TRyle “")mnxmn ON the bases e;; vectors govern the rule structure, then we can observe the
elements respectively. Consider e;;, the images of e; bordering relations same in Theorem 1. First bordering
which is T(e;) are connected to the three nearest relation of cell x; is inside of the upright triangle

neighbors elements considering the von Neumann  (see Fig. 4), then
(O ® (t)
Yap = Xa-1p T X+ F X(j-y (Mod2) (13)
Second bordering relation of cell x;; isinside of the downright triangle (see Fig. 5), then

® _ © ® ®
Y = Xajen + XGrep + Xgj-n (Mod2) (14)

where x({), € Z, . Finally we obtain the transition of the _ Example 3 Let us tke m=4, n=5 (see

repr@entétion matrix presented asin Theorem 2 Figs. 1-3). The transition rule matrix of 2D finite CA
Consider m-even and n-odd case exa.mple for with von Neumann triangular neighbors over Galois

the structure of the transition rule matrix of 2D finite von field GH(2) i.e. Z,, isgiven asfollows:

Neumann CA over triangular lattice as below.

K M 0 O
—4n=5 [ M K M 0
(Tpr{?ll:n )20x20 = Ol M, K2 M,
(0] 0O M; K

where K, M1, M, are the sub-matrices of order 5 x 5, where

01 00O 1 00 0O 0 0 00O
1 01 0O 0 01 0O 01 00O
K=]0101O0|,Mq=|0 O1O0 Of,M;=]0 0O 0 0O
0 01 01 0O 00 0O 0 00 1O
0 00 10 0 00 01 0 0 00O
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000
eoreeer
OIS

Figure 7. The skin of a building in architecture is an application area of triangular CA

Remark 2 It can beinvestigated the CA works
on a triangular lattice (or triangular grid works) on
both regular and irregular lattices as in [18]. The only
difference is the coordinates of the vertices, while the
topologica information about the graphic data remains
the same. (See details in [18]). Each triangle in the
grid works have exactly 3-neighboring triangles (see
Figs. 2-3). Regarding CA structure, each element of a
triangular surface could be assigned with special
characteristic values, such as, color pixel values or
gray scale levels for similarity to CA states or spin
values. Hence it can be possible to control the spin
states of the constructed surface behavior.

4  Conclusion

In the present paper we investigate the theory two
dimensional, uniform null boundary, von Neumann CA
over Galois field GF(2). As far as we know, there is no
structure study of von Neumann 2D linear CA on
triangular lattice over GF(2) in the literature. Due to main
CA structures are sufficiently simple to investigate in
mathematical ways, the present new construction could
be applied many areas related to these CA using any
other transition rules. It is introduced two main theorems
for determining the structure of these triangular von
Neumann CA for a genera case of linear transformation.
Also after constructed the transition rule matrix
representation of 2D linear von Neumann CA, one
should find some real life applications for the 2D linear
CA, it is another goals of the next study. We believe that
triangular CA theory could be applied successfully in
especially image processing area [12, 13, 14, 15, 16] and
the other science branches in near future [7, 8, 10]. Some
other interesting results and further connections on this
direction wait to be explored in triangular von Neumann
2D CA [18].
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II.B.PEJUKEIIOB, C.YI'Y3, 3. AYAP

TpeyroabHbie KieTo4uHbie apToMaThl ®oH Helimana
Haja nossimu TAJIYA GF (2)

OyHaaMeHTadbHAsg  CTPYKTypa  KIETOYHBIX
aromaroB (KA) mpezcraBiser co0oif  JIHCKPETHYIO
CHeUaIbHYI0 JANHAMHYECKYIO MOJEb, HO TIJI00anbHOE
TIOBE/ICHHE BO MHOTHX HTEPAILIMOHHBIX BPEMEHAX MOXKET
ObITh ONM3KMM K HENPEepHIBHOM MaTeMaTHYecKoi
Mojenu u cucreme. M3sectHo, uro teopus KA - odeHs
OGorarass W  TOJNE3Has  JUHAMHYECKass  MOJEIb,
¢dokycupysicb Ha HX JIOKJIbHOW HHpOpPMAIMU U
cocelHUX s4Yelikax. MaremaTudeckoe MpeACTaBICHUE
0a30BOil MOJIeNT TOKa3bIBAET BBIYMCIMMBIC 3HAYCHUS
MaTeMmatuueckoi cTpyktypel KA. B Hactosmei pabote
HCCIIeIOBaHa CTPYKTypa ABymepHOro (2D) koHeYHOTO
JIMHEIHOTO TPEYTroJIbHOTO KIJIETOYHOTO aBToMara ()OH
Heiimana ¢ HyneBoii rpanuiiel Hax nmonem [anya GF(2).

VIIK: 004.652.4

Jpyrumu cioBaMu, OH paccMaTpuBaeTcs Ha moie [anya,
TO €CTh B CIydae ¢ 2 COCTOSIHUSMHU Wi Z_2. 31ech MBI
mojydaeM  MaTpWIbl  OpaBuia  mepexoma  (win
uHpoOpMaIMK) IS K&KAOTO OTACIBHOTO  Cirydas,
MPEICTaBICHHOTO B cTaThe. HacKONBKO HaM M3BECTHO, B
JUTEpPaType OTCYTCTBYET CTPYKTYPHOE HCCICIOBAHUC
nBymepHoro smHeiiHoro KA  ¢on Heiimana Ha
TpeyroipHO# pemerke Hany GF(2). M3-3a toro, uro
OCHOBHBIE CTpYKTypbhl KA JocTaToyHO TPOCTBI ISt
W3yYCHHMsI MaTeMaTHYeCKH, MBI CYHMTaeM, YTO B
HACTOSIIIIEC BPEMs HOBOC CTPOUTEIILCTBO MOXKET OBITh
MPUMEHEHO BO MHOTHX O0JIACTSX, CBSI3aHHBIX C ITHMH

KA, c¢ wucnome3oBaHmeM JIOOBIX JIPYTUX MPaBHI
nepexoja.

KoaioueBble ci10Ba: KI€TOUYHBIC aBTOMATHI, MOJIE
lamya, TpeyroipHas pemieTka, MaTpUIbBl MPaBHI
nepexoja.

9.C.babagxaHoB

AXBOPOT TUSUMITAPUOA CAMAPAJIN SANEKTPOH XU3MATJIAPHU TAHJALL

TEXHOJTIOIMMACHK

Maxkonaga Xxu3Mamiiap MaxmyacuaaH uoopar ax0opor Tu3umiapaa GoianaHyBUMHUHT XyKyK-Japaxkaiaapu Oyiiuda pean
BAaKTAa MYXMM 3JIGKTPOH XHU3MAaTJIApHHU caMapali TaHJIall Macajack Kypuo dukwiagy. Xu3MaT KypcaTHIia MaBxy ] 00beKTiIapapo
MyHocabaTnapuaa maiino OyiaaauraH anoMaTiapHUHT kapa€H cxemacu unuiad yukwirad. JKapa€uaaru xap 6up o0beKTra KCIepT
K03 GUIHEHTIapyUra sra mnapaMeTpin Oenrmianuiap KUpUTHIAAW. XU3MaTIapHH caMapald TaHJAIlAa XU3MaTIapHH MyJIaTH,
JKOpHil BakTTa HUCOATH, OOFNUKNINTY, OaKapuIll Xa)KMHTa Ba CAIMOK KO3 (UIMEHTIapIHN ME30HIN Y3rapTHPHII OPKaIH XHU3MaT
MYXUMJIHTHHE OLIMPHII TEXHOJOTHSCH HIIIA0 YHMKWIAgW. XW3MaTiap CaJMOFHHH Y3TapTHPYBUM TEXHOJOTUS YUyH MAaxcCyc
Me30HIap, QYHKOMSUIap Ba ITOPUTMIIAP HMIITA0 YMKWITaH. XU3MaTIapHU TaKgUM 3TyBUM axOopoT TH3mMulapja ¢oiigamaHyBuura

caMapalii Xu3MaTJIapHH TaHJall TeXHOJIOorusicuaaH (HoiaaHum TakIu dTHIa 1.
Kanut cy3aap: unrepaktuB ax00pOT THU3MMH, JIEKTPOH XHU3MAT, jkapaéH, QyHKIMs, aJrOpUTM, CHH(IAITUPHII, 00BEKT,

ajomMmar.

Kupuu

Tankuk KwiMHaguraH coxa TaUIKHIOTJIaph
(daonuATHHE TOM MabHOAA MaKcaara HyHaITHPUITAH
XM3MaTiap Maxmyacu cHdarHma Kapam MYMKHH.
Tamkwior poupacupard axOopoT THU3MMIIAPHH peal
umyu dnektpon xm3Mariap (DX) OwmaH TabMHHIAIT
yu4yH 3apyp OyiaraH MabiIyMOTJIApHHHT OOBEKTIapu
TaHJAHAAW, KelMH ymoly MablyMOTIapHU KaiiTa

L (;maBo3zum)

WIUIOBYM XHU3MaTiap CyObeKTIapra TakIuM OSTHIAIH.
Ax6opot Tu3uM (AT) TamkuiaoT HaoTUATHHU aBTOMATHK
Oaxapuil sMac, OaJKu MabIyMOTIap OKHMMUHH Ba Yy
OpKaJIl 3JIEKTPOH XHM3MaTlap Ma)KyaCHMHH OOIIKapHIl
Bazudacunu Oaxapaau. Tusumaaru Gapua Xu3MaTiiapu
doiimananyBumiapra WyHaATHPWIraH Oynub, y JaBo-
3UMIIap Ba JIaBO3MMIIApZAAru Baszudanap opKaiu Kypca-
THIaIM (CXeMaia KeNTHPHIITaH).

H (Ba3uda)

U (dbotimananyBun)

Xusmatinap Basuanapra, Bazudangap J1aBO3UM-
Japra, JJaBo3umiap ¢oiganaHyBUMIapra Ba IIyHUHTCK,
XU3MaTiap JaBo3uM Ba QoiinananyBuunapra, Bazudanap
¢oiinananyBuniapra OUPHUKTUPUIIAIH. Bynnan
XU3MATIapHU TAaKIUM OTUII KyWumaru cuH(mard
HIaKJiap opKanu amainra omupuiaau: 1) xusmar TyFpu-
JMaH-TYFpu QoiinananyBun, Basuda Ba IaBO3UMTa,;

2) Xu3Mar TYFpuaaH-TYFpH Basuda opkaau poiinananys-

E (xﬁzMaT)

Yy Ba JIaBO3MMIa; 3) XM3MaT (OHIaTaHyBUUTa JIABO3HM
OpKaJM KypcaTuiiau.

MACAJAHUHI KYAUJIAIIA

Pean Bakrtma doitnananypunra ATnma Ttakmum
STHIAETTaH MYXUM JJICKTPOH XU3MATIApHU THU3AMIIH
capaia0, aBTOMaTHK TaKJIU(} STUII XU3MaTIapHA UHTEN-
JIGKTyal caMapaid TaHJall MAaCallaCHHH KEITHPUO
YUKapaau.
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