СОВРЕМЕННЫЕ ТЕХНОЛОГИИ КОРРЕКЦИИ КОСМЕТИЧЕСКИХ ДЕФЕКТОВ ЛИЦА (обзор литературы)

Храмова Н.В.

Ташкентский государственный стоматологический институт, Узбекистан

Резюмеси

Maqolada yosh kichkina nuqsonlarni yuz va yoshdagi oʻzgarishlarni tuzatish uchun zamonaviy kosmetologi-yaning rivojlanishining ikkita asosiy yoʻnalishi keltirilgan. PRP-texnologiyasini (plazmolizatsiyalash), koʻrsatkichlar va kontrendikatsiyalarni olish usuli, harakat mexanizmi bataf-sil tavsiflangan. Fibroblast madaniyatini transplantatsiya qilishning istiqbolli usuli ham taqdim etilgan, samaradorligi isbotlangan, bemordan olingan fibroblast madaniyatini olish uchun birusultaqdimetilgan.

Summary

The article presents two main directions of development of modern cosmetology for correction of small defects in the face and age changes. The technique of obtaining PRP-technology (plasmolifting), indications and contraindications, the mechanism of action is described in detail. A promising method for transplantation of fibroblast cultures is also presented, its effectiveness is proved, a method for obtaining fibroblast cultures taken from the patient is presented.

Возрастные изменения мягких тканей лица и шеи – одна из важнейших проблем косметической медицины. В течение последних лет значительно усовершенствовались методы омоложения кожи лица. Известно, что возрастные изменения, в большой степени сказываются на психоэмоциональном состоянии человека. Эстетика лица приобретает всё большее значение. Внедрение новых биотехнологий способствовало стремительному развитию данного направления медицины. Медицинская биотехнология – технология получения продуктов, необходимых для профилактики и лечения

заболеваний, из живых клеток различного происхождения [2,7].

Одним из перспективных технологий в медицине является применение плазмы, обогащенной тромбоцитами (PRP-plateled –richplasma).

В 1974 году Ross и коллеги опубликовали одну из первых работ, описывающих регенеративный потенциал тромбоцитов. В общемедицинских целях данные клетки используются для контроля кровотечения при тромбоцитопении, острых геморрагиях или лейкемии [1]. Это послужило основанием для разработки технологии использования плазмы крови с повышенным содержанием собственных тромбоцитарных факторов роста.

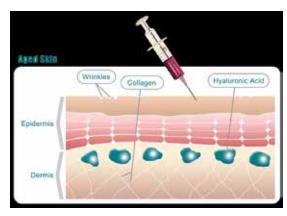
Препараты PRP получают посредством разных методик и оборудования. Называются они также по-разному в зависимости от биохимической структуры получаемого препарата: PRP (PlateletRichPlasma – обогащенная тромбоцитами плазма крови, жидкая форма препарата или суспензия); PRG (PlateletRichGel – обогащенный тромбоцитами гель); PRF (PlateletRichFibrin – обогащенный тромбоцитами фибрин); PRFM (PlateletRichFibrinMatrix – обогащенный тромбоцитами фибриновый матрикс).

Согласно последней международной классификации, предложенной объединенным коллективом специалистов из Швейцарии, США, Италии, Польши, Швеции, Голландии, Южной Кореи, все препараты PRP подразделяют на 4 категории в зависимости от содержания в них лейкоцитов и фибрина:

- 1) чистая обогащенная тромбоцитами плазма крови (PPRP PurePlateletRichPlasma), которую получают с помощью сепаратора крови (separator PRP), например, методом Vivostat PRF или Anitua's PRGF;
- 2) обогащенная лейкоцитами и тромбоцитами плазма крови (LPRP LeucocyteandPlateletRichPlasma), методы получения Curasan, Regen, Plateltex, SmartPReP, PCCS, Magellan и GPS PRP. При этом термины PPRP и LPRP относятся к неактивированным жидким формам этих продуктов, тогда как их активированные версии называются: гели PPRP и гели LPRP, соответственно. Следует отметить, что неактивированные препараты PRP не могут рассматриваться как неактивные препараты, поскольку их полная активация только отложена и происходит после контакта с тканями в области введения препарата (Рис. 3,4,5).
- 3) чистый обогащенный тромбоцитами фибрин (PPRF Pure Platelet Rich Fibrin), метод получения Fibrinet;
- 4) обогащенный лейкоцитами и тромбоцитами фибрин (LPRF Leucocyte and Platelet Rich Fibrin), метод получения Choukroun's PRF [2]

Некоторые сферы применения PRP-технологии (плазмолифтинг):

- 1. профилактика старения (Рис.6);
- 2. реабилитационная терапия кожи после пребывания на солнце, агрессивных косметических процедур, пластических операций;


Рис.1.Схема получения PRP

- 3. лечение «стрессовой кожи», образование которой провоцируют проживание в мегаполисе, хронические стрессы, вредные привычки, ночной образ жизни, прием определенных лекарств, общее снижение иммунитета;
- 4. программы интенсивного омоложения кожи лица и любых участков тела рук, внутренней поверхности плеч и бедер, ягодиц, живота и др.);
- 5. устранение вялости кожи после жестких диет, резкого похудения;
- 6. регуляция гормонального фона на уровне кожи:
 - 7. устранение неравномерной пигментации;
 - 8. лечение выраженной сухости кожи;
 - 9. лечение себореи;
 - 10. лечение акне и постакне;
- 11. воздействие на любые рубцовые изменения кожи, в том числе на растяжки;
 - 12. стимулирование роста волос.

Все существующие способы получения препаратов PRP имеют общие ключевые технологические моменты [6]. Сначала производят забор крови и добавляют к ней антикоагулянт. Как правило, применяют антикоагулянты на основе солей цитрата натрия и раствора глюкозы, как с аденином, так и без него, а также сукцината натрия. Эти антикоагулянты препятствуют спонтанной активации тромбоцитов, что важно для правильного приготовления препаратов PRP. Далее выполняют двукратное центрифугирование крови. Задача первого центрифугирования – разделение крови на 3 слоя: нижний – эритроциты, верхний – бедная тромбоцитами плазма (PPP) и средний слой, («buffycoat»), содержащий основное количество тромбоцитов и лейкоциты. При 2м центрифугировании достигается кон центрирование



Рис.2. Методика проведения плазмолифтинга

Рис.3. Состояние кожи до введения PRP

тромбоцитов, таким образом, получают PRP (или PPRP, плазму крови, содержащую концентрат тромбоцитов, или LPRP, плазму, содержащую концентрат тромбоцитов и лейкоциты). Конечная стадия процессинга – добавление к полученной PRP активатора (как правило, хло-

Рис.4. Состояние кожи после введения PRP

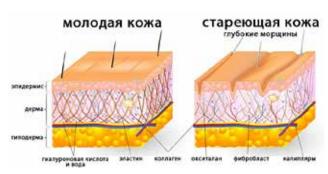


Рис.5. Стабилизация молекул гиалуроновой кислоты и коллагена после взаимодействия с PRP при плазмолифтинге

Рис. 6.Эффект использования PRP-технологии (плазмолифтинга) в косметологии

рида или глюконата кальция, Ca2+).Происходящая при этом коагуляция плазмы сопровождается активацией тромбоцитов, которые высвобождают факторы роста, и полимеризацией фибрина (Рис.1). Последняя происходит в первые 10–12 мин после активации тромбоцитов,

Рис. 7. Сравнительный анализ состояния молодой и стареющей кожи

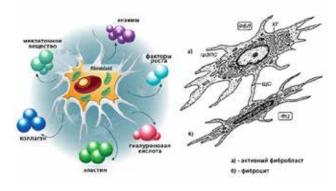


Рис. 8. Вещества и факторы роста, продуцируемые фибробластами

Рис.9. Взятие биоптата кожи с заушной области для культивирования фибробластов

в течение которых PRP трансформируется из суспензии в гель (PRP гель) [3].

Плазмолифтинг хорошо комбинируется с другими косметологическими процедурами, например, лазерной шлифовкой, пилингами, может применяться для подготовки кожи к пластике (Рис.2). Несмотря на то, что при вводе инъекций под кожу поставляется собственная плазма пациента, процедура имеет ряд противопоказаний. Она не выполняется при беременности, грудном кормлении, воспалениях в зоне обработки, инфекционных, иммунных болезнях. Также не допускается

плазмолифтинг пациентам, не достигшим 25-летнего возраста.

Еще одной перспективным направлением является трансплантации культур фибробластов (SPRS-терапия). Было показано, что пересаженные аллогенные фибробласты оказывают непосредственное влияние на заживление ран (Ross, 1968) и на эпителизацию (Coulombetel, 1989). (Puc.8).

Применение фибробластов в клинике эстетической медицины возможно по следующим основным направлениям: косметология, трихология, комбустиология, в качестве сопутствующей Anty-Age терапии (Рис.7).

Фибробласты получают из биоптата кожи, взятого из заушной области пациента (диаметром около 5 мм), посредством ферментативной обработки или механической дезагрегации образцов (Рис.9).

Показание к терапии фибробластами:

- профилактика старения инъекции можно начинать с 40 лет, тем самым выполняется заместительная терапия;
- омоложение кожи лица, шеи, декольте, рук устраняет признаки старения: истонченность, дряблость, сниженный тургор и эластичность, пигментацию, атрофичность и мелкую морщинистость (Puc.10);
- улучшение качества кожи тела: живота, спины, бедер. Терапия фибробластами усиливает эластичность и тонус, тем самым оказывая лифтинговый эффект;
 - устранение пигментации вокруг глаз;
- ускорение «созревания» молодых рубцов в «возрасте до 12 месяцев;
 - лечение постакне рубцов;
 - лечение растяжек;
- подготовка к пластическим операциям и быстрое восстановление после них;
- ускорение восстановления после пилингов, лазерных процедур и т.д.

Противопоказания к терапии фибробластами: острые инфекционные заболевания; обострение хронических болезней; аутоиммунные заболевания соединительной ткани; склонность к келоидным и гипертрофическим рубцам; онкологические заболевания; длительная терапия стероидами; беременность, лактация.

Рис.10. Состояние после SPRS-терапии

В настоящее время наиболее часто используют ферментативный способ получения первичной культуры. Для этого биоптат промывают физиологическим раствором или фосфатно-солевым буфером, содержащим антибиотики, обрабатывают раствором фермента коллагеназы и/или трипсина. Затем, осторожно пипетируя, клетки освобождают от матрикса, осаждают центрифугированием, отмывают от ферментов и, ресуспендируя в культуральной среде, культивируют в условиях насыщающей влажности в СО2-инкубаторе [4,5].

Имеющиеся на сегодняшний день данные позволяют предположить, что наиболее перспективным направлением развития технологий коррекции косметических дефектов является совместное использование аутологичныхдермальных фибробластов с компонентами межклеточного матрикса. Исследования по разработке препарата, содержащего гиалуроновую кислоту и дермальные фибробласты человека, показали, что немедленный клинический эффект от использования коммерческих наполнителей можно успешно сочетать с долговременным эффектом от применения живых фибробластов. Терапия аутологичными фибробластами значительно эффективнее, чем инъекции Ботокса, которые при длительном и частом применении может вызывать повреждение нервных окончаний и нарушение питания кожи.

Заключение

В настоящее время имеется множество методов коррекции небольших косметических дефектов лица. Однако их применение не всегда дает положительный эффект. Поэтому на сегодняшний момент методики, основанные на клеточных технологиях, совершенствуются

Список литературы

- Гольдберг Е.Д., Дыгай А.М., Жданов В.В. Роль гемопоэзиндуцирующего микроокружения в регуляции кроветворения при цитостатических миелосупрессиях. РАМН, Институт фармакологии, Томск, 1999. – 113с.
- 2. Основы биотехнологии. Для студентов институтов; аспирантов и практических работников. Издательская фирма «Наука» СПБ 1993 г. с, 600 стр. 166 ил.
- 3. Муртазаев С.СМ., Храмова Н.В. Современные биотехнологии. Перспективы применения в стоматологии. Монография, Ташкент, 2017, с.135
- Смолянинов А.Б. Клеточная медицина: концепция ее развития // Клинич. патофиз. - 2004. - №1
- 5. Туманов В.П., Серов Г.Г., Рунова В.П. Цитологическая характеристика культуры фибробластов человека и оптимальные условия приготовления трансплантатов для клиники //Новости клинической цитологии России. — 1997. — № 1. — С. 34—36.
- deGroot, Geesink R., Clein C, Serecian P. Plasma sprayed coatings of hydroxyapatite // J. Biomed. Mater.Res. — 1987. — Vol. 24. — P. 1375.
- 7. Lucas PA, Calcutt AF, Ossi P, et al. Mesenchymal stem cells from granulation tissue J Cell Biochem 1993:17E:122.