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The problems of identifying gas leak points, high pressure points and other deviations of
the pipeline network are directly related to transition processes. Researches in transition
processes in pipeline transportation are relevant both from a theoretical and from a
practical point of view.

Mathematical modeling of transition processes in main pipelines is performed within
the framework of quasi-one-dimensional equations of Zhukovsky N.E. taking into account
the forces of friction, gravity and inertia. For the gaseous medium, these equations are
in the third order with respect to unknowns. By using the method of type averaging,
developed by Charny I.A. the degree of equations can be reduced by one order. And the
transition to mass flow, analogous to the current function when solving two-dimensional
hydrodynamic equations, allows us to obtain linear equations for mass flow, in terms of
the product of unknowns of gas density and velocity. Regarding mass flow and pressure,
autonomous equations are compiled that represent the type of telegraph equation.

Taking into account possible abrupt changes of the unknowns in time and distance,
the solution is sought in the form of functional series. The demonstrativeness of this
method lies in the fact that the perturbation frequencies relevant to the parabolic and
hyperbolic types of equations and the intermediate variant are distinguished.

A general method is presented for solving problems of transition from one steady
state of operation of a site to another steady state of operation. Under the steady state
we refer to the stationary and periodic modes of operation of the site. In these cases,
derivatives are easily determined, and the integrals involved in the general solution of
problems are calculated with quadrature.

The solutions obtained are easily realized in the form of software products and take
into account the constant slope of the axis of the gas pipeline, which is especially im-
portant when calculating pipelines with large diameters operating at high and ultra-high
operating pressures.
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1 Introduction
Pipeline networks designed to transfer the product (water, natural gas, petroleum,
petroleum products, etc.) or mechanical energy over a certain distance are designed for a
particular steady operation state. The established mode of operation can be stationary,
when the indicators of the network and its links remain constant in time, or periodic. In
other cases, there are transition processes that can be divided into the following types of
tasks:
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– the transition from one stationary state to another stationary state;
– the transition from a stationary state to a periodic state;
– the transition from a periodic state to a stationary state;
– the transition from one periodic state to another periodic state.

The repeated formation and propagation of shock waves and vacuum leads to the
formation of zones of fatigue stresses in the pipeline network. The transition processes
in pipelines are characterized by abrupt changes in hydrostatic pressure (for example,
at starting and stopping processes of connected supercharger) or mass flow rate (for
example, when a consumer is connected or disconnected in a radial network or a parallel-
connected power unit). In this regard, it is advised to formulate and solve problems
involving functional series (for example, Fourier series) in time and distance. Moreover,
the formation of aperiodic solutions, due to both the intrinsic frequencies of the pipeline
and the frequencies of external disturbances, can be expected. The eigenfrequencies of the
elementary section are determined by a period that is equal to the ratio of the length of
the section to the velocity of propagation of small pressure disturbances (sound velocity).
And the period of external disturbances can be arbitrary.

Another reason for addressing to the transition problems in pipelines in general, and
in main gas pipelines in particular, is the deviation of the network’s indicators from the
intended technological indicators due to the dynamic change in flow. To eliminate these
deviations, you must first study their nature in theoretical terms. In mathematical mod-
eling of the functioning of pipelines within the framework of a quasi-one-dimensional ap-
proach, all these transition processes are described by a system of equations of Zhukovsky
N.E., which is usually supplemented by power factors, as well as the equations of conser-
vation of energy and gas state. A more adequate mathematical model of the process of
pipeline gas transportation is presented in the monograph [1], which takes into account
almost all power and energy factors affecting the transition processes.

According to [2], partial or complete blockage in the main pipelines for the trans-
portation of natural gas leads to a low efficiency of the entire system, and increases the
risk of a potential accident. Therefore, effective detection and real-time monitoring of
partial blockages (blockages) are important to ensure the safe operation of the pipeline.
Since natural gas pipelines are a closed hydrodynamic system, a decrease in pipeline ca-
pacity or pipeline shutdown directly affects upstream and downstream users, resulting
in economic losses for both pipeline operators and consumers. Based on the analytical
solution method, this article presents a method for detecting partial blockage for natural
gas pipelines under normal operating conditions. A partial blocking model was used and
an analytical solution was obtained for the direct problem of inverting partial blocking
parameters by mass flow with allowance for random errors. It was used as observable
values in the implementation of Tikhonov’s regularization method in order to establish
an objective optimization function that contained partial blocking parameters and ran-
dom measurement errors. The genetic algorithm is used to solve the inverse problem
of parameter identification. Numerous computational experiments have shown that the
proposed theoretical method can be used to identify the parameters of partial blocking
of a gas pipeline with an extended partial overlap for a pipeline under normal operating
conditions, where the observed parameters contain random errors.

In the work of Kim A.S., Mansurov M.N. [3], a methodology is proposed for selecting
and calculating a pipeline system that ensures the fulfillment of the transport-consumer
task during the development of offshore hydrocarbon fields, taking into account the relia-
bility of underwater pipelines. The optimal transport scheme is determined by production



28 Khujaev I.K., Mamadaliyev H.A., Aminov H.H.

rates, the number of platforms, their distance from the coast and from each other, sea
depths along the pipeline routes, as well as economic indicators characterizing the cost of
hydrocarbons and the laying of pipelines. Pipeline transitions from one state to another
are described by terms of graph theory, which provide a visual representation of the nature
of this process and simplify the procedure for compiling and solving Erlang equations.

The thesis of Yermolayeva N.N. [4] presents mathematical models of unsteady turbu-
lent flows of a multicomponent gas mixture at ultrahigh pressures along the offshore gas
pipelines, taking into account heat exchange through a multilayer wall. External tasks of
the Stefan type of external freezing of the pipeline in the conditions of the northern seas
are considered and new models and methods for solving problems based on these models
are proposed. For the process of gas transportation through the offshore gas pipeline
under freezing conditions, a mathematical model and a method for numerical solution of
the corresponding problems with variable relief have been proposed.

The article [5] considers the issue for building a high-performance computing system
for solving the problem of modeling non-stationary operating modes of gas pipelines. The
authors propose the use of GRID technologies using asynchronous iterative methods. The
examples show the effectiveness of asynchronous iterative methods for solving systems of
linear algebraic equations.

In the work of Panferov V.I. and Panferov S.V. [6] two problems of modeling transition
processes in gas supply systems are considered. The formulation of the problem considers
the general form of the system of equations. In the first case, the transition process on a
long pipeline is considered, when the loss caused by friction is large enough, in the second
case, the loss due to friction is less enough or the pipeline is short.

The problems are brought to the solution of parabolic and hyperbolic equations with
respect to pressure. The pressure at the beginning of the section is assumed to be con-
stant, and at the end of the section, due to the closing of the valve, the flow rate and
its consumption rate are zero. An analytical solution was obtained by the method of
separating variables and graphs of pressure changes are given. From the pressure graphs
it follows that the transition process is aperiodic in nature, the pressure rises smoothly to
the required pressure level at all points of the pipeline. The graphs of the solution show
the pressure distribution along the length of the pipeline at different points of time, when
the phenomenon is described by the wave equation.

Follows from the conclusion of work that the real transition process caused by closing
of the valve at the end of the gas pipeline, obviously has an appearance of decaying
oscillations, the largest vibration amplitude is observed directly at the valve, however
pressure increment is not as big as it takes place at a hydraulic shock in a dropping
liquid.

Different factors of pipeline transportation of liquid and gas environments are analyzed
in works [7–10].

With regard to the power factors taken into account and the methods of solving
problems, this work is close to [11–14]. Introduction of gas mass flow and linearization
of I.E. Charny allows us to make separate equations for hydrostatic pressure and mass
flow, which are the equations of telegraph type. The problems are solved by the Fourier
method involving functional series. The advantages of these solutions lie in the fact
that the selection of the approaches of the “long” and “short” pipelines is made as if
automatically, i.e. according to the results.

A similar approach was used in [15], where the problem was solved for given periodic
boundary conditions of mass flow and gas pressure.
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When considering the four types of tasks listed above, we limit ourselves to the cases
when the values of one or another indicator are given at the boundaries. At the same
time, if the mass flow values are set at the boundaries, then the problem with respect
to pressure has boundary conditions of the third kind. Accordingly, if pressure values
are set at the boundaries, then, when solving the problem with respect to mass flow, we
have another kind of boundary conditions. In this regard, when setting a fixed indicator
at the border, to determine another indicator, we use the already known solution of the
indicator, the boundary conditions of which are set.

Despite this, the expected solution summarizes the results of a number of problems
on the gas-dynamic state of the elementary section of the gas pipeline during transient
processes, including those from [6, 11].

2 Quasi-one-dimensional equations of real gas pipeline transport
used in the modeling of transition processes

For the description of transients occurring in the area with a constant slope and constant
diameter 𝐷, we use the equations [1]⎧⎪⎪⎨⎪⎪⎩

−𝜕𝑝
𝜕𝑥

=
𝜆𝑤2

2𝐷
𝜌+ 𝜌𝑔 sin𝛼 +

𝜕𝜌𝑤

𝜕𝑡
,

− 1

𝑐2
𝜕𝑝

𝜕𝑡
=
𝜕 (𝜌𝑤)

𝜕𝑥
, 𝑝 = 𝑍𝜌𝑅𝑇.

(1)

Hereinafter, the variables are pressure 𝑝, density 𝜌 and velocity 𝑤, the values of which
are averaged over the cross-sectional area 𝑓 = 𝜋𝐷2/4 and depend on the coordinate 𝑥 and
time 𝑡. The acceleration of gravity 𝑔, the velocity of propagation of small perturbations
of pressure (sound) in the gas-pipe system 𝑐, the gas super-compressibility coefficient 𝑍,
the reduced gas constant 𝑅 and the temperature 𝑇 of the transported gas have constant
or averaged values.

In three steps, we simplify the equations of system (1). In the first step in the first two
equations, the density 𝜌 is replaced by the expression 𝑝 found from the third equation. In
the second step, we introduce the linearization of a member of the Darcy-Weisbach law
by replacing 𝑤2 ≈ 𝑤*𝑤, where 𝑤* = 𝑐𝑜𝑛𝑠𝑡 is the characteristic speed of the process or the
linearization parameter. In the third step, we introduce the mass flow

𝑀 = 𝜌𝑤𝑓.

As a result of these steps, the system of equations becomes linear:⎧⎪⎪⎨⎪⎪⎩
−𝜕𝑝
𝜕𝑥

=
𝑏

𝑓
𝑀 +

𝑎

𝑐2
𝑝+

1

𝑓

𝜕𝑀

𝜕𝑡
,

−𝜕𝑝
𝜕𝑡

=
𝑐2

𝑓

𝜕𝑀

𝜕𝑥
.

(2)

In the first equation, the term with the coefficient 𝑎 =
𝑔 sin𝛼

𝑍𝑅𝑇
𝑐2 reflects the force of

gravity, the term with the coefficient 𝑏 =
𝜆𝑤*

2𝐷
represents the friction force, and the third

term to the right of the equal sign indicates the fraction of the local component of the
gas inertia force in the pressure drop. According to the physics of the problem 𝑏 has a
non-negative value, and can have positive, zero or negative values.
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With the exclusion of pressure 𝑝 from system (2), we obtain an equation for mass flow
𝑀 [12]:

𝜕2𝑀

𝜕𝑡2
+ 𝑏

𝜕𝑀

𝜕𝑡
= 𝑐2

𝜕2𝑀

𝜕𝑥2
+ 𝑎

𝜕𝑝

𝜕𝑥
, (3)

and with the exception of mass flow 𝑀 from (3) we obtain the equation for hydrostatic
pressure 𝑝:

𝜕2𝑝

𝜕𝑡2
+ 𝑏

𝜕𝑝

𝜕𝑡
= 𝑐2

𝜕2𝑝

𝜕𝑥2
+ 𝑎

𝜕𝑝

𝜕𝑥
. (4)

3 Statement of a general problem in terms of mass flow
We suppose that before the start of changes at the ends of the section, the distribution
of the mass flow rate and its time derivative at the site are known:

𝑀 (𝑥, 0) = 𝜙 (𝑥) ,
𝜕𝑀(𝑥, 0)

𝜕𝑡
= 𝜓(𝑥) when 0 6 𝑥 6 𝑙, 𝑡 < 0. (5)

Starting from the moment of time 𝑡 = 0 at the beginning (𝑥 = 0) and end (𝑥 = 𝑙) of
the section, certain laws of changing the mass flow rate of gas will be established:

𝑀(0, 𝑡) =𝑀0(𝑡), 𝑀(𝑙, 𝑡) =𝑀𝑙(𝑡) when 𝑡 > 0. (6)

Such changes occur when consumers are turned on and/or disconnected, who are
connected to the pipeline network before and after the sections under consideration. The
reason for the change in mass flow rate at the inlet of the section may be the start-
up and shutdown of the supercharger (compressor) connected in parallel to the other
superchargers.

The functions 𝜙(𝑥), 𝜓(𝑥), 𝑀0(𝑡) and 𝑀𝑙(𝑡) can be continuous, piecewise continuous
functions of their argument or constant. Functions 𝑀0(𝑡) and 𝑀𝑙(𝑡) must be twice dif-
ferentiable functions. At the points (0, 0) and (𝑙, 0) functions expressing the initial and
boundary conditions may have different values, which lead to the discontinuity of the
desired functions at these points.

4 The solution of the problem (3), (5) - (6)
To solve the problem, we use the method of separation of variables [11, 16].

In order to facilitate the process of solving equation (3), a new unknown 𝑢(𝑥, 𝑡) is
introduced according to

𝑀(𝑥, 𝑡) = 𝑒−
𝑏𝑡
2
− 𝑎𝑥

2𝑐2 𝑢(𝑥, 𝑡). (7)

In this case, the equation becomes simpler:

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
+
𝑏2𝑐2 − 𝑎2

4𝑐2
𝑢. (8)

The boundary conditions for this equation are:

𝑢 (𝑥, 0) = 𝑒
𝑎

2𝑐2
𝑥𝜙 (𝑥) ,

𝜕𝑢 (𝑥, 0)

𝜕𝑡
− 𝑏

2
𝑢 (𝑥, 0) = 𝑒

𝑎
2𝑐2

𝑥𝜓 (𝑥) , (9)

𝑢 (0, 𝑡) = 𝑒
𝑏𝑡
2 𝑀0 (𝑡) , 𝑢 (𝑙, 𝑡) = 𝑒

𝑏𝑡
2
+ 𝑎𝑙

2𝑐2𝑀𝑙 (𝑡) . (10)

It is possible to prove that with the introduction of a new function [𝑣(𝑥, 𝑡) according
to

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑒
𝑏𝑡
2 𝑀0 (𝑡) +

𝑥

𝑙
𝑒

𝑏𝑡
2

[︁
𝑒

𝑎𝑙
2𝑐2𝑀𝑙 (𝑡)−𝑀0 (𝑡)

]︁
(11)
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boundary conditions become uniform

𝑣(0, 𝑡) = 𝑣(𝑙, 𝑡) = 0

and the task is reduced to a form that allows the use of the method of separation of
variables.

In this case, the equation becomes inhomogeneous:

𝜕2𝑣

𝜕𝑡2
= 𝑐2

𝜕2𝑣

𝜕𝑥2
+
𝑏2𝑐2 − 𝑎2

4𝑐2
𝑣 + 𝐹 (𝑡) +𝐺(𝑡)𝑥,

where

𝐹 (𝑡) = −𝑒
𝑏𝑡
2

[︂
𝑀 ′′

0 (𝑡) + 𝑏𝑀 ′
0 (𝑡) +

𝑎2

4𝑐2
𝑀0 (𝑡)

]︂
,

𝐺 (𝑡) = −1

𝑙
𝑒

𝑏𝑡
2

{︂
𝑒

𝑎𝑙
2𝑐2

[︂
𝑀 ′′

𝑙 (𝑡) + 𝑏𝑀 ′
𝑙 (𝑡) +

𝑎2

4𝑐2
𝑀𝑙 (𝑡)

]︂
−

−
[︂
𝑀 ′′

0 (𝑡) + 𝑏𝑀 ′
0 (𝑡) +

𝑎2

4𝑐2
𝑀0 (𝑡)

]︂}︂
.

We look for the solution 𝑣(𝑥, 𝑡) of the problem in the form of a sum:

𝑣(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) + 𝑉 (𝑥, 𝑡).

The first term 𝑈(𝑥, 𝑡) represents the general solution of a homogeneous equation

𝜕2𝑈

𝜕𝑡2
= 𝑐2

𝜕2𝑈

𝜕𝑥2
+
𝑏2𝑐2 − 𝑎2

4𝑐2
𝑈 (12)

under zero boundary conditions

𝑈(0, 𝑡) = 𝑈(𝑙, 𝑡) = 0. (13)

The second term 𝑉 (𝑥, 𝑡) is a particular solution of the inhomogeneous equation

𝜕2𝑉

𝜕𝑡2
= 𝑐2

𝜕2𝑉

𝜕𝑥2
+
𝑏2𝑐2 − 𝑎2

4𝑐2
𝑉 + 𝐹 (𝑡) +𝐺(𝑡)𝑥 (14)

also under zero boundary conditions

𝑉 (0, 𝑡) = 𝑉 (𝑙, 𝑡) = 0.

We will return to the initial conditions after determining all the necessary components
𝑢(𝑥, 𝑡).

The use of the method of separation of variables [16] to equation (12) with boundary
conditions (13) leads to the solution:

𝑈(𝑥, 𝑡) =
∞∑︁
𝑛=1

𝑌𝑛(𝑡)𝑋𝑛(𝑥),

where the eigenfunctions are
𝑋𝑛(𝑥) = 𝑠𝑖𝑛

𝜋𝑛𝑥

𝑙
,
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𝑌𝑛(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶𝑛𝑐ℎ

√︀
D𝑛𝑡+𝐷𝑛𝑠ℎ

√︀
D𝑛𝑡 when D𝑛 > 0,

𝐶𝑛 +𝐷𝑛𝑡 when D𝑛 = 0,

𝐶𝑛 cos
√︀
|D𝑛|𝑡+𝐷𝑛 sin

√︀
|D𝑛|𝑡 when D𝑛 < 0.

Here D𝑛 =
𝑏2𝑐2 − 𝑎2

4𝑐2
− 𝑐2𝜆2𝑛, 𝜆𝑛 =

𝜋𝑛

𝑙
.

The square of the norm of the eigenfunctions 𝑋𝑛(𝑥) is ‖𝑋2(𝑥)‖ = 𝑙/2.
The final form of the general solution of equation (12) with zero boundary conditions

is

𝑈 (𝑥, 𝑡) =
∞∑︁
𝑛=1

⎛⎜⎜⎜⎝
𝐶𝑛𝑐ℎ

√︀
D𝑛𝑡+𝐷𝑛𝑠ℎ

√︀
D𝑛𝑡 when D𝑛 > 0

𝐶𝑛 +𝐷𝑛𝑡 D𝑛 = 0

𝐶𝑛 cos
√︀
|D𝑛|𝑡+𝐷𝑛 sin

√︀
|D𝑛|𝑡 D𝑛 < 0

⎞⎟⎟⎟⎠ sin
𝜋𝑛𝑥

𝑙
. (15)

The particular solution of the inhomogeneous equation (14), with zero boundary con-
ditions, we look for in the form

𝑉 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐿𝑛(𝑡) sin
𝜋𝑛𝑥

𝑙
. (16)

The statement of this solution in (14) leads to a second-order differential equation

𝐿′′
𝑛(𝑡)−D𝑛𝐿𝑛(𝑡) =

2

𝜋𝑛
[1− (−1)𝑛]𝐹 (𝑡)− (−1)𝑛 2𝑙

𝜋𝑛
𝑄(𝑡), (17)

where the following factorizations are

1 =
∞∑︁
𝑛=1

𝑞𝑛 sin
𝜋𝑛𝑥

𝑙
, 𝑥 =

∞∑︁
𝑛=1

𝑔𝑛 sin
𝜋𝑛𝑥

𝑙
, (18)

when 𝑞𝑛 =
2

𝜋𝑛
(1− (−1)𝑛) and 𝑔𝑛 = −(−1)𝑛 2𝑙

𝜋𝑛
.

With constant, periodic, and some other types of functions 𝐹 (𝑡) and 𝐺(𝑡), equation
(17) is easily solved. We consider that this equation is solved and the value of the function
is determined 𝐿𝑛(𝑡).

Thus, we got a solution for 𝑣(𝑥, 𝑡):

𝑣(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) + 𝑉 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝐿𝑛(𝑡) sin
𝜋𝑛𝑥

𝑙
+

+
∞∑︁
𝑛=1

⎛⎜⎜⎜⎜⎜⎝
𝐶𝑛𝑐ℎ

√︀
D𝑛𝑡+𝐷𝑛𝑠ℎ

√︀
D𝑛𝑡 when D𝑛 > 0

𝐶𝑛 +𝐷𝑛𝑡 when D𝑛 = 0

𝐶𝑛 cos
√︀
|D𝑛|𝑡+𝐷𝑛 sin

√︀
|D𝑛|𝑡 when D𝑛 < 0

⎞⎟⎟⎟⎟⎟⎠ sin
𝜋𝑛𝑥

𝑙
.
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Reverse transition to the solution of equation (8) 𝑢(𝑥, 𝑡) we will produce according to
(11):

𝑢 (𝑥, 𝑡) = 𝑒
𝑏𝑡
2 𝑀0 (𝑡) +

𝑥

𝑙
𝑒

𝑏𝑡
2

[︁
𝑒

𝑎𝑙
2𝑐2𝑀𝑙 (𝑡)−𝑀0 (𝑡)

]︁
+

∞∑︁
𝑛=1

𝐿𝑛 (𝑡) sin
𝜋𝑛𝑥

𝑙
+

+
∞∑︁
𝑛=1

⎛⎜⎜⎜⎜⎜⎝
𝐶𝑛𝑐ℎ

√︀
D𝑛𝑡+𝐷𝑛𝑠ℎ

√︀
D𝑛𝑡 when D𝑛 > 0

𝐶𝑛 +𝐷𝑛𝑡 when D𝑛 = 0

𝐶𝑛 cos
√︀
|D𝑛|𝑡+𝐷𝑛 sin

√︀
|D𝑛|𝑡 when D𝑛 < 0

⎞⎟⎟⎟⎟⎟⎠ sin
𝜋𝑛𝑥

𝑙
.

To find the values of the unknown coefficients, we implement the initial conditions (9).
The use of the orthonormality of eigenfunctions 𝑋𝑛(𝑥) [16], expansions (18) and the

values of the integral

𝐼𝑛 =

𝑙∫︁
0

𝑒
𝑎𝜉

2𝑐2𝜙(𝜉) sin
𝜋𝑛𝜉

𝑙
𝑑𝜉 (19)

let us find the value of 𝐶𝑛 from the first condition (9):

𝐶𝑛 = −𝑀0(0)𝑞𝑛 −
1

𝑙

[︁
𝑒

𝑎𝑙
2𝑐2𝑀𝑙(0)−𝑀0(0)

]︁
𝑔𝑛 − 𝐿𝑛(0) +

2

𝑙
𝐼𝑛.

The second initial condition from (9), after calculating and substituting the values of

𝑢(𝑥, 0) and
𝜕𝑢(𝑥, 0)

𝜕𝑡
, leads to the value of the coefficients

𝐷𝑛 =
1

𝛾𝑛

{︂
−𝐿′

𝑛 (0) +
𝑏

2
𝐿𝑛 (0) +

𝑏

2
𝐶𝑛 −𝑀 ′

0 (0) 𝑞𝑛−

− 1

𝑙

[︁
𝑒

𝑎𝑙
2𝑐2𝑀 ′

𝑙 (0)−𝑀 ′
0 (0)

]︁
𝑔𝑛 + 𝐽𝑛

}︂
.

Here

𝐽𝑛 =

𝑙∫︁
0

𝑒
𝑎𝑥
2𝑐2𝜓(𝜉) sin

𝜋𝑛𝜉

𝑙
𝑑𝜉, (20)

𝛾𝑛 =

⎛⎜⎜⎜⎝
√︀
D𝑛 when D𝑛 > 0

1 when D𝑛 = 0√︀
|D𝑛|𝐷𝑛 when D𝑛 < 0

⎞⎟⎟⎟⎠ .
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The reverse transition to mass consumption in (7) gives the final form of the solution
to problem (3), (5) - (6) with respect to mass consumption:

𝑀 (𝑥, 𝑡) = 𝑒−
𝑎𝑥
2𝑐2𝑀0 (𝑡) +

𝑥

𝑙
𝑒−

𝑎𝑥
2𝑐2

[︁
𝑒

𝑎𝑙
2𝑐2𝑀𝑙 (𝑡)−𝑀0 (𝑡)

]︁
+

+𝑒−
𝑏𝑡
2
− 𝑎𝑥

2𝑐2

∞∑︁
𝑛=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝑛𝑐ℎ
√︀

D𝑛𝑡+𝐷𝑛𝑠ℎ
√︀
D𝑛𝑡whenD𝑛 > 0

𝐶𝑛 +𝐷𝑛𝑡whenD𝑛 = 0

𝐶𝑛 cos
√︀
|D𝑛|𝑡+𝐷𝑛 sin

√︀
|D𝑛|𝑡whenD𝑛 < 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝐿𝑛 (𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

× sin
𝜋𝑛𝑥

𝑙
.

(21)

5 The solution of the problem of pressure using (21)
The solution of the problem with respect to pressure can be obtained by solving the
equation (4) under initial and boundary conditions, which are formed from (5) and (6)
according to the equations of system (2). The resulting boundary conditions will belong
to the third type. Accordingly, the whole process of solving the problem is repeated,
that means, it is necessary to find eigenvalues, eigenfunctions for 𝑥 and 𝑡, to prove the
orthonormality of eigenfunctions for 𝑥 and so on. To avoid this complex process of solving
the problem with respect to pressure, we turn directly to the system of equations (2) and
the resulting expression (21).

The second equation of system (2) is written in the form of
𝜕𝑝

𝜕𝑡
= −𝑐

2

𝑓

𝜕𝑀

𝜕𝑥
and we

integrate both sides of the equation in time from zero to 𝑡:

𝑝 (𝑥, 𝑡) = 𝑝 (𝑥, 0)− 𝑐2

𝑓

𝑡∫︁
0

𝜕𝑀 (𝑥, 𝜉)

𝜕𝑥
𝑑𝜉. (22)

The expression of the initial pressure distribution 𝑝(𝑥, 0) is found from the first equa-

tion of the system (2). The values 𝑀(𝑥, 0) and
𝜕𝑀(𝑥, 0)

𝜕𝑡
are known for 0 6 𝑥 6 𝑙 and

𝑡 > 0. In this regard, when 𝑡 → 0 the first equation of system (2) can be written in the
form:

𝜕𝑝

𝜕𝑥
+
𝑎

𝑐2
𝑝 = −𝑏𝜙(𝑥) + 𝜓(𝑥)

𝑓
.

Multiplying both sides of the equation by 𝑒
𝑎𝑥
𝑐2 , its left-hand side can be represented as

a monomial:
𝜕(𝑒

𝑎𝑥
𝑐2 𝑝)

𝜕𝑥
= −𝑒

𝑎𝑥
𝑐2
𝑏𝜙(𝑥) + 𝜓(𝑥)

𝑓
.

Now, supposing 𝑝 (0, 0) = 𝑝00 we integrate the equation from zero to 𝑥:

𝑒
𝑎𝑥
𝑐2 𝑝(𝑥, 0)− 𝑝00 = Φ(𝑥) ,

where

Φ (𝑥) = − 𝑏
𝑓

𝑥∫︁
0

𝑒
𝑎𝜂

𝑐2 𝜙(𝜂)𝑑𝜂 − 1

𝑓

𝑥∫︁
0

𝑒
𝑎𝜂

𝑐2 𝜓(𝜂)𝑑𝜂.
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Hence we find that, according to the initial conditions (5), the initial distribution of
pressure over the section can be described by the formula

𝑝(𝑥, 0) = 𝑒−
𝑎𝑥
𝑐2 [𝑝00 + Φ(𝑥)] .

The integral is involved in (22). First we find the integrand function:

𝜕𝑀 (𝑥, 𝜉)

𝜕𝑥
= − 𝑎

2𝑐2
𝑒−

𝑎𝑥
2𝑐2𝑀0 (𝜉)+

+
1

𝑙
𝑒−

𝑎𝑥
2𝑐2

(︁
1− 𝑎

2𝑐2
𝑥
)︁ [︁
𝑒

𝑎𝑙
2𝑐2𝑀𝑙 (𝜉)−𝑀0 (𝜉)

]︁
+

+𝑒−
𝑏𝜉
2
− 𝑎𝑥

2𝑐2

∞∑︁
𝑛=1

[𝑌𝑛 (𝜉) + 𝐿𝑛 (𝜉)]
(︁𝜋𝑛
𝑙

cos
𝜋𝑛𝑥

𝑙
− 𝑎

2𝑐2
sin

𝜋𝑛𝑥

𝑙

)︁
.

The integration of this expression concerns parts that depend on time, and the re-
maining factors will appear as coefficients of integration.

Then we select the parts that depend on time, and integrate them:

�̄�0 (𝑡) =

𝑡∫︁
0

𝑀0 (𝜉) 𝑑𝜉, �̄�𝑙 (𝑡) =

𝑡∫︁
0

𝑀𝑙 (𝜉) 𝑑𝜉,

�̄�𝑛 (𝑡) =

𝑡∫︁
0

𝑒−
𝑏𝜉
2 𝐿𝑛 (𝜉) 𝑑𝜉, 𝑌𝑛 (𝑡) =

𝑡∫︁
0

𝑒−
𝑏𝜉
2 𝑌𝑛 (𝜉) 𝑑𝜉.

The first three integrals depend on the functions 𝑀0(𝑡) and 𝑀𝑙(𝑡). They can be
calculated analytically or numerically. The fourth integral is obviously independent of
the boundary conditions, but is defined as a conditional operator depending on the value
of the expression D𝑛. The value of the integral is taken from [11].

When D𝑛 > 0 only time dependent part has integral

𝑌 (1)
𝑛 (𝑡) =

𝑡∫︁
0

𝑒−
𝑏𝜉
2

(︁
𝐶𝑛𝑐ℎ

√︀
D𝑛𝜉 +𝐷𝑛𝑠ℎ

√︀
D𝑛𝜉

)︁
𝑑𝜉 =

=
1

𝑎2

4𝑐2
+ 𝑐2𝜆2𝑛

[︂(︂
− 𝑏
2
𝐶𝑛 −

√︀
D𝑛𝐷𝑛

)︂ (︁
𝑒−

𝑏𝑡
2 𝑐ℎ
√︀
D𝑛𝑡− 1

)︁
+

+

(︂
−
√︀

D𝑛𝐶𝑛 −
𝑏

2
𝐷𝑛

)︂
𝑒−

𝑏𝑡
2 𝑠ℎ
√︀

D𝑛𝑡

]︂
,

when D𝑛 = 0 –

𝑌 (2)
𝑛 (𝑡) =

𝑡∫︁
0

𝑒−
𝑏𝜉
2 (𝐶𝑛 +𝐷𝑛𝑡) 𝑑𝜉 =

= −2

𝑏

(︁
𝑒−

𝑏𝑡
2 − 1

)︁
𝐶𝑛 +

[︂
−2

𝑏
𝑡𝑒−

𝑏𝑡
2 − 4

𝑏2

(︁
𝑒−

𝑏𝑡
2 − 1

)︁]︂
𝐷𝑛,
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when D𝑛 < 0 –

𝑌 (3)
𝑛 (𝑡) =

𝑡∫︁
0

𝑒−
𝑏𝜉
2

(︁
𝐶𝑛 cos

√︀
|D𝑛|𝜉 +𝐷𝑛 sin

√︀
|D𝑛|𝜉

)︁
𝑑𝜉 =

=
1

𝑎2

4𝑐2
+ 𝑐2𝜆2𝑛

[︂(︂
− 𝑏
2
𝐶𝑛 −

√︀
|D𝑛|𝐷𝑛

)︂(︁
𝑒−

𝑏𝑡
2 cos

√︀
|D𝑛|𝑡− 1

)︁
+

+

(︂√︀
|D𝑛|𝐶𝑛 −

𝑏

2
𝐷𝑛

)︂
𝑒−

𝑏𝑡
2 sin

√︀
|D𝑛|𝑡

]︂
.

Substituting the obtained integrals into equation (22) leads to the solution of the problem
with respect to pressure:

𝑝 (𝑥, 𝑡) = 𝑒−
𝑎𝑥
𝑐2 [𝑝00 + Φ(𝑥)]−

−𝑐
2

𝑓
𝑒−

𝑎𝑥
2𝑐2

{︂
− 𝑎

2𝑐2
�̄�0 (𝑡) +

1

𝑙

(︁
1− 𝑎

2𝑐2
𝑥
)︁ [︁
𝑒

𝑎𝑙
2𝑐2 �̄�𝑙 (𝑡)− �̄�0 (𝑡)

]︁
+

+
∞∑︁
𝑛=1

[︀
𝑌𝑛 (𝑡) + �̄�𝑛 (𝑡)

]︀ (︁𝜋𝑛
𝑙

cos
𝜋𝑛𝑥

𝑙
− 𝑎

2𝑐2
sin

𝜋𝑛𝑥

𝑙

)︁}︃
.

(23)

Simultaneous participation sin
𝜋𝑛𝑥

𝑙
and cos

𝜋𝑛𝑥

𝑙
in the eigenfunction of the problem

with respect to 𝑝(𝑥, 𝑡) with 𝑥 (the parenthesis under the sum) indicates the participation
in the boundary conditions 𝑝(𝑥, 𝑡) for both the desired function and its derivative with
respect to 𝑥, that is, boundary conditions of the third type.

6 The solution of the problem relative to pressure when setting
the boundary conditions for pressure
In this case, the boundary conditions are

𝑝 (𝑥, 0) = 𝜙 (𝑥) ,
𝜕𝑝 (𝑥, 0)

𝜕𝑡
= 𝜓 (𝑥) for 0 6 𝑥 6 𝑙, 𝑡 < 0; (24)

𝑝 (0, 𝑡) = 𝑝0 (𝑡) , 𝑝 (𝑙, 𝑡) = 𝑝𝑙 (𝑡) for 𝑡 > 0. (25)

The solution to this problem, according to the already existing solution regarding mass
flow, is written in the form:

𝑝 (𝑥, 𝑡) = 𝑒−
𝑎𝑥
2𝑐2 𝑝0 (𝑡) +

𝑥

𝑙
𝑒−

𝑎𝑥
2𝑐2

[︁
𝑒

𝑎𝑙
2𝑐2 𝑝𝑙 (𝑡)− 𝑝0 (𝑡)

]︁
+

+𝑒−
𝑏𝑡
2
− 𝑎𝑥

2𝑐2

∞∑︁
𝑛=1

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝

𝐴𝑛𝑐ℎ
√
D𝑛𝑡+𝐵𝑛𝑠ℎ

√
D𝑛𝑡 when D𝑛 > 0

𝐴𝑛 +𝐵𝑛𝑡 when D𝑛 = 0

𝐴𝑛 cos
√︀
|D𝑛|𝑡+𝐵𝑛 sin

√︀
|D𝑛|𝑡 when D𝑛 < 0

⎞⎟⎟⎟⎟⎟⎟⎠+𝑁𝑛 (𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦+
+sin 𝜋𝑛𝑥

𝑙
.

(26)

The values of the coefficients 𝐴𝑛, 𝐵𝑛 and the function 𝑁𝑛(𝑡), that are entered instead
of 𝐶𝑛, 𝐷𝑛 and 𝐿𝑛(𝑡) are determined as it was done in solving the problem of mass flow,
but using conditions (24) and (25).
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7 The solution of the mass flow problem when the boundary
conditions for pressure are given
In this case, it is advisable to refer directly to the system of equations (2), and not to

equation (3).

When 𝑡 = 0 the condition
𝜕𝑝(𝑥, 0)

𝜕𝑡
= 𝜓(𝑥) is known. Substituting it into the second

equation of system (2), and taking 𝑀(0, 0) = 𝑀00, we obtain the initial distribution of
mass flow according to conditions (24):

𝑀(𝑥, 0) =𝑀00 −
𝑓

𝑐2

𝑥∫︁
0

𝜓(𝜉)𝑑𝜉.

The first equation of system (2) is written as

𝜕

𝜕𝑡

(︀
𝑒𝑏𝑡𝑀

)︀
= −𝑓𝑒𝑏𝑡−

𝑎𝑥
𝑐2
𝜕(𝑒

𝑎𝑥
𝑐2 𝑝)

𝜕𝑥
.

We integrate both sides of this equality from zero to 𝑡:

𝑒𝑏𝑡𝑀 (𝑥, 𝑡)−𝑀 (𝑥, 0) = −𝑓𝑒−
𝑎𝑥
𝑐2

𝑡∫︁
0

𝜕𝑒
𝑎𝑥
𝑐2

+𝑏𝜂𝑝 (𝑥, 𝜂)

𝜕𝑥
𝑑𝜂.

From here we find the expression for mass flow:

𝑀 (𝑥, 𝑡) = 𝑒−𝑏𝑡𝑀 (𝑥, 0)− 𝑓𝑒−𝑏𝑡−𝑎𝑥
𝑐2

𝑡∫︁
0

𝜕𝑒
𝑎𝑥
𝑐2

+𝑏𝜂𝑝 (𝑥, 𝜂)

𝜕𝑥
𝑑𝜂. (27)

Find the integrand function:

𝜕𝑒
𝑎𝑥
𝑐2

+𝑏𝜂𝑝 (𝑥, 𝜂)

𝜕𝑥
=

=
𝑎

2𝑐2
𝑒

𝑎𝑥
2𝑐2

+𝑏𝜂𝑝0 (𝜂) +
1

𝑙

(︁
1 +

𝑎

2𝑐2
𝑥
)︁
𝑒

𝑎𝑥
2𝑐2

+𝑏𝜂
[︁
𝑒

𝑎𝑙
2𝑐2 𝑝𝑙 (𝜂)− 𝑝0 (𝜂)

]︁
+

+
∞∑︁
𝑛=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐴𝑛𝑐ℎ
√︀
D𝑛𝜂 +𝐵𝑛𝑠ℎ

√︀
D𝑛𝜂 when D𝑛 > 0

𝐴𝑛 +𝐵𝑛𝜂 when D𝑛 = 0

𝐴𝑛 cos
√︀
|D𝑛|𝜂 +𝐵𝑛 sin

√︀
|D𝑛|𝜂 when D𝑛 < 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+𝑁𝑛 (𝜂)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

×𝑒
𝑏𝜂
2
+ 𝑎𝑥

2𝑐2

(︁ 𝑎

2𝑐2
sin

𝜋𝑛𝑥

𝑙
+
𝜋𝑛

𝑙
𝑐𝑜𝑠

𝜋𝑛𝑥

𝑙

)︁
.

First, we calculate the integrals:

𝑝0 (𝑡) =

𝑡∫︁
0

𝑒𝑏𝜂𝑝0 (𝜂) 𝑑𝜂, 𝑝𝑙 (𝑡) =

𝑡∫︁
0

𝑒𝑏𝜂𝑝𝑙 (𝜂) 𝑑𝜂,

�̄�𝑛 (𝑡) =

𝑡∫︁
0

𝑒
𝑏𝜂
2 𝑁𝑛 (𝜂) 𝑑𝜂, 𝑌𝑛 (𝑡) =

𝑡∫︁
0

𝑒
𝑏𝜂
2 𝑌𝑛 (𝜂) 𝑑𝜂.
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We assume that the values of the first three integrals are calculated according to the
boundary conditions. We assume that the integral values of 𝑌𝑛(𝑡) are known: only in the
formulas of 𝑌𝑛(𝑡) are the coefficients 𝐶𝑛 and 𝐷𝑛 should be replaced by 𝐴𝑛 and 𝐵𝑛.

Substituting the obtained expressions for and the values of the integrals in (27) allows
us to write the final solution for mass flow rate in the form:

𝑀 (𝑥, 𝑡) = 𝑒−𝑏𝑡

⎡⎣𝑀00 −
𝑓

𝑐2

𝑥∫︁
0

𝜓 (𝜁)𝑑𝜁

⎤⎦−
−𝑓𝑒−𝑏𝑡− 𝑎𝑥

2𝑐2

{︂
𝑎

2𝑐2
𝑝0 (𝑡) +

1

𝑙

(︁
1 +

𝑎

2𝑐2
𝑥
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(28)

At known values of pressure and mass flow rate, the gas density is determined by the

formula 𝜌 =
𝑝

𝑍𝑅𝑇
, and the flow rate is determined by the formula 𝑤 =

𝑀

𝜌𝑓
.

8 Computational experiment
A program has been compiled for the case when boundary conditions are specified

with respect to mass flow in the form of constant values. The initial data are taken as
𝑙 = 1 𝑘𝑚, 𝑤0 = 13.24𝑚/𝑠, 𝑤* = 6, 62𝑚/𝑠, 𝑝00 = 5𝑀𝑃𝑎, sin𝛼 = 0.1, 𝑐 = 200𝑚/𝑠,
𝜆 = 0.01, 𝑀0 =𝑀𝐻 = 400 𝑘𝑔/𝑠, 𝑀𝐾 = 0 𝑘𝑔/𝑠.

Graphs of mass flow, hydrostatic pressure, and gas velocity for dimensionless times 0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0 and 2.5 correspond to the case are presented in Fig.
1-3.

Figure 1 Graphs of mass flow at the exit from the site for various moments of dimensionless
time. 𝑙 = 1 𝑘𝑚, 𝑤0 = 13.24𝑚/𝑠, 𝑤* = 6, 62𝑚/𝑠, 𝑝00 = 5𝑀𝑃𝑎, sin𝛼 = 0.1, 𝑐 = 200𝑚/𝑠,
𝜆 = 0.01, 𝑀0 = 𝑀𝐻 = 400 𝑘𝑔/𝑠, 𝑀𝐾 = 0 𝑘𝑔/𝑠.
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Figure 2 The distribution of hydrostatic pressure in the site at different points in time. Same
data as in Fig. 1.

Figure 3 The change in the average flow rate in the site at different points in time. Same data
as in Fig. 1.

Comparisons of the calculation results using the above formulas with the results of [11]
showed their identity. This proves the reliability of the proposed solution for the first
problem.

Works on the implementation of the solution method for the cases when the boundary
conditions are specified in the form of Fourier series are carried out.

9 Conclusion
Taking into account the relevance of studying the characteristics of transition processes

in gas pipelines, we formulated and analytically solved the problems for the cases of given
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boundary conditions with respect to mass flow and gas pressure. With the account of
the possibility of the presence or formation of gaps in the boundary conditions, solutions
were sought in the form of functional series. For cases of transition from a stationary or
periodic mode of operation of the considered elementary segment to another stationary
or periodic mode, the integrals given in the text are calculated in quadratures.

In the solutions obtained (21), (23), (26) and (28), the mechanisms of perturbation
suppression due to the friction force are embedded. At the same time, the frequencies of
disturbances, which are stored longer (D𝑛 < 0), are highlighted, have a quasi-resonant
nature (D𝑛 = 0) or are quenched intensively (D𝑛 > 0).

Taking into account the influence of gravity and the local component of inertia, as well
as variable boundary conditions in a mathematical model of transition processes helps to
ensure the adequacy of the solutions obtained for problems of pipeline gas transportation.
And this corresponds to the trend of further development of the network of gas pipelines
with the transition to large diameters and high working pressures.
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МОДЕЛИРОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ ПРИ
ТРУБОПРОВОДНОЙ ТРАНСПОРТИРОВКЕ РЕАЛЬНЫХ
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Хужаев И.К., Мамадалиев Х.А., Аминов Х.Х.
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Научно-инновационный центр информационно-коммуникационных технологий,

100125 Узбекистан, Ташкент, Буз-2, 17А

Задачи идентификации утечки, участков накопления высоких напряжений и от-
клонения функции сети от технологических требований непосредственно связаны
переходными процессами. В связи с этим исследование переходных процессов в тру-
бопроводах является актуальным как с теоретической, так и с практической точ-
ки зрения. Математическое моделирование переходных процессов в магистральных
трубопроводах производится в рамках квазиодномерных уравнений Н.Е. Жуковско-
го с учетом сил трения, гравитации и инерции. Для газовой среды эти уравнения
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имеют третий порядок относительно неизвестных. Применением способа осредне-
ния типа И.А. Чарного степень уравнений снижается на один порядок. А переход
к массовому расходу, аналогу функции тока при решении двумерных уравнений
гидродинамики, позволяет получить линейные уравнения относительно массового
расхода, в выражении которых фигурирует произведение неизвестных плотности и
скорости газа. Относительно массового расхода и давления составлены автономные
уравнения, которые представляют тип телеграфного уравнения. С учетом возмож-
ных скачкообразных изменений искомых по времени и расстоянию решение ищет-
ся в виде функциональных рядов. Наглядность этого метода заключается в том,
что выделяются частоты возмущений, свойственные уравнениям параболического
и гиперболического типов, и промежуточного варианта. Представляется общий ме-
тод решения задач перехода от одного установившегося режима работы участка к
другому установившемуся режиму работы. Под установившимся режимом подразу-
меваются стационарный и периодический режимы работы участка. В этих случая
легко определяются производные и в квадратурах вычисляются интегралы, фигу-
рирующие в общем решении задач. Полученные решения легко материализуются в
виде программных продуктов и учитывают постоянный уклон оси газопровода, что
особенно важно при расчете трубопроводов с большими диаметрами, функциониру-
ющих при высоких и сверхвысоких рабочих давлениях.

Ключевые слова: магистральный газопровод, стационарный и периодический ре-
жимы работы участка, переходные процессы, математическое моделирование, теле-
графное уравнение, метод разделение переменных, функциональные ряды
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