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The work deals with the development of algorithms and software for simulation of
complex fluid flow in the subsurface. These tools can be used in important practical
applications such as oil and gas recovery problems, ecological problems concerning the
soil and groundwater contamination and many others. The major goal of the research
is implementation of the governing model by explicit numerical methods with rather
mild stability conditions in order to achieve high parallelization efficiency on modern
supercomputers.

For this purpose a classical mathematical model of multiphase slightly compressible
fluid flow in a porous medium has been modified by analogy with the quasigasdynamic
system of equations, hyperbolization of the system has also been performed. Finally the
phase continuity equation has got a regularizing term and the second time derivative with
small parameters. The corresponding three-level explicit difference scheme has the second
order of approximation in time and in space. The model takes into account possible heat
sources, gravitational and capillary forces.

The proposed approach is verified by a number of test predictions, physically correct
results are obtained numerically. High speed-up of computations is observed on hybrid
clusters including multicore CPUs and accelerators like graphics processing units (GPUs).
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1 Introduction

Mathematical modeling of multiphase fluid flows in porous media is necessary for solving
practically important problems such as oil and gas recovery problems, ecological prob-
lems concerning the soil and groundwater contamination and many others. Models and
algorithms for their solution still need improvement to predict processes in strata with
sufficient accuracy at reasonable computing time [1].

Numerical simulation of these large-scale processes is very time-consuming and im-
possible without the employment of high-performance computing systems. Nowadays the
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rapid growth in the computer performance is mainly achieved due to the use of hybrid
architectures including multicore CPUs and different accelerators like graphics process-
ing units (GPU) [2]. However such architectures cause serious difficulties in the software
development. Computational algorithms with logical simplicity, for example, explicit
finite-difference schemes for the quasigasdynamic (QGD) system [3] can be adapted easily
to supercomputers and allow to exploit them more efficiently.

Besides there is another reason of the interest in algorithms of the explicit type. Some
oil recovery problems (problems with combustion fronts, phase transitions, complicated
functions of the relative phase permeability) require calculations with very small space
steps constraining time steps as At = O (h?) not only for explicit but also for implicit
schemes. This is necessary in order to achieve the critical accuracy of the solution. Then
explicit schemes can gain in terms of the total run time in comparison with implicit ones.
An original approach to modeling porous medium flows is developed by the authors in
accordance to this trend.

2 Mathematical model and numerical implementation

The work presents an original model of fluid flow through porous media constructed by
analogy with the QGD system of equations [3] and allowing implementation via explicit
numerical methods [4]. The derivation of kinetically-consistent finite difference schemes
and the related QGD system is based on the so-called principle of minimum sizes in
continuum mechanics . We assume the existence of minimal space and time scales which
act as lower limits for description details [5]. In porous media the minimal reference length
[ is a distance at which rock microstructure is negligible (I is of the order of hundred rock
grain sizes), the minimal reference time 7 is the time needed to reach inner equilibrium in
the volume of linear size [. Starting from the basic flow equations for slightly compressible
fluid [6-8]|, using the minimal scales and the differential approximation technique the next
multiphase flow model has been derived in the non-isothermal case (phase o = w (water),
n (Non-Aqueous Phase Liquid — NAPL), g (gas); r denotes a rock):

0 (PaSa) | (paSa) | g+ diviCe
ot + 7 12 + div (paua) = (a T+ leTgrad (paSa) ) (1)
ka
u, = —K— (grad P, — p.g), (2)

(67

+ div (Z paHaua> =

l
= divAggradT + Y div% pagradT, (3)

0
ot @;paSaEa + (1 =) pr B,

P, T,
9_07 pa:p0a[1+6oc(Pa_P0a)_na(T_TO)]; a=w,n, (4)

Pg = pOgP_Og T
» Sa=1 (5)

Here S, is the saturation, P, is the pressure, p, is the density, u, is the Darcy velocity,
T is the temperature, F, is the internal energy, g, is the source of fluid, ¢ is the porosity,
K is the absolute permeability, k, is the relative phase permeability, p, is the dynamic
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viscosity, g is the gravity vector, ¢, is the sound speed in a-phase, 3, is the coefficient of
isothermal compressibility, 7, is the coefficient of thermal expansion, Fy,, po, and Ty are
reference values, p, = const — the rock density.

The phase continuity equation (1) is modified: it gets a regularizing term and a second
order time derivative with small parameters. In [4, 9] some estimations of these parameters
are given. Particularly the value 7 ~ h/c is satisfactory (h is the space grid step).
The equation type is changed from parabolic to hyperbolic, consequently the three-level
explicit scheme with a rather mild stability condition can be used, convective terms are
approximated by central differences. In [4,9] the time step restriction At = O(h*/?) has
been justified for this scheme.

As the temperature of all phases and of the rock is identical the system involves (3)
as a single equation of the total energy conservation, also modified by analogy with the
QGD system [10]. This equation includes the effective coefficient of heat conductivity
et = @ Y, Sara+ (1 — ) A, and the enthalpy which is calculated via the heat capacity

at constant pressure Cp,:
T

Ho = Hop + / Cp, (T)dT, (6)
To

The connection between the internal energy and the enthalpy is expressed by the next

relations: P
E,=H,— -2, E. = H,. (7)
Po

Dependencies of the dynamic viscosity pq(7), the heat capacity Cp, (T") and the coefhi-
cient of heat conductivity \,(7") on temperature are expressed by some empirical relations.

Capillary pressures are described by Parker’s functions [11], the relative phase perme-
ability is presented by Stone’s Model I [6].

For numerical implementation of the above system an algorithm of the explicit type is
proposed. The water pressure P,, the water saturation S,,, the NAPL saturation S,, and
the temperature 7" are chosen as primary variables in the non-isothermal three-phase case.
Main stages of the algorithm are explicit approximations of (1) and (3) to get the auxiliary
quantities (paS,) and (go Yo PaSalo + (1 — cp)p,.ET) as well as the solution of a system
of nonlinear algebraic equations by Newton’s method locally at each computational point
to obtain the primary variables [10].

3 Test predictions

For verification of the proposed model and algorithm some problems on three-phase flow
in a homogeneous porous medium are considered.

The first one is the problem of phase redistribution under the gravity, this is an infil-
tration problem. The computational domain is a rectangular reservoir with impermeable
boundaries filled by sand. At the initial moment water, oil and gas are distributed over
the domain uniformly (see figure 1). Over time, water will go down, gas will rise to the
top, and oil will occupy mainly the middle part of the reservoir. Figure 2 demonstrates
the comparison of water, oil and gas distributions obtained in isothermal as well as in
non-isothermal cases. Infiltration process is accelerated by the temperature gradient, fluid
layering occurs more actively. The speed-up and the parallelization efficiency was esti-
mated while computing this test problem on the supercomputer K100 installed at the
Keldysh Institute of Applied Mathematics. The computational grid was 200x200x 100 =
= 4 million points, up to 100 CPU cores were employed. The efficiency achieved was
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about 90%, the dependence of the speed-up on the number of processors was close to
linear.
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Figure 1 Statement of the problem of phases’ redistribution under the gravity
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Figure 2 Results at some time moment for the phases’ redistribution problem

The second test is the gas injection problem in a semi-infinite region. The 1D statement
is actual: the flow occurs in the horizontal direction from left to right due to the pressure
difference at the ends of the considered unit segment, at the left boundary gas is injected
under pressure. The initial conditions for the saturation are the uniform distribution as
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in the previous test, the water pressure equals the atmospheric pressure, the temperature
is 285 K. The gas saturation is fixed at the left boundary (S, = 0.7) with the pressure of
1.1 atm.

Two variants of the boundary conditions for the temperature are set:

T| =T| =285K (8)
z=0 r=1
or oT
2=0 S0 K, 0T lz=1 0 9)

Results of computations at some time moment are depicted in figure 3. The saturation
profiles and the temperature distributions under the different conditions for the temper-
ature are compared. Due to the heating the filtration process is faster, the shape of the
saturation graphs changes.
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Figure 3 Results at some time moment for the gas injection problem

As one more test the 3D problem of infiltration in a cubic domain with a hot source on
the top boundary has been solved. Initially in the reservoir the residual water saturation
is set, oil and gas are distributed periodically, the water pressure equals the atmospheric
pressure, the temperature is 285 K. A source of water with S,, = 0.6, S,, = 0.05 and the
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temperature of 320 K at the atmospheric pressure (without pumping) occupies a corner
part of the top. The top boundary is open to the atmosphere, the bottom is impermeable,
all side faces are permeable. The gravity is taken into account.
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Figure 4 Results for the problem of infiltration in the cubic domain with a hot source on the

top boundary
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Results at the moment of 1000 seconds are shown in figure 4. One can observe fields
of the water pressure, the temperature and the saturation of three phase fluids. Fronts
of the temperature and the saturation spread from the source. Water gradually forces
out oil and gas and tends to the bottom, the temperature front differs from the water
saturation front. Physically correct dynamics of the process is observed.

4 Concluding Remarks

At present the proposed kinetically-based model of multiphase fluid flow in a porous
medium is tested on oil recovery problems. The created approach can be used for the
simulation of perspective thermal methods of oil recovery (such as heat carrier pump-
ing into the stratum) aimed at increasing the oil production rate of difficult-to-recover
hydrocarbon reserves.
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Crarbsi nOCBsiIIeHa pa3spaboTKe aJrOPUTMOB U IIPOIPAMM JIJIsl MOJIEJIMPOBAHMSI CI0K-
HBIX TEYEHU{T JKIJKOCTH B IIOJ[3€MHOM IIPOCTPAHCTBE. DTU CPEJICTBA MOI'YT OBITH HCIOJIb-
30BaHbI B BaKHBIX [PAKTHYECKUX [IPUIOKEHUSIX, TAKIX KaK IIPOOJIeMbl 100bdu HeDTH U
raza, 9KOJIOrHIecKre podJIeMbl, CBSI3aHHBIC € 3aIPS3HEHNEM MOYBbI U IPYHTOBBIX BOJ, U
MHOIEX JpyruX. OCHOBHOII IEJIBIO UCCJIE/I0BAHNS SIBJISIETCS PeAJIN3allis MaTeMaTHIeCKOil
MO/JIe/TH (PUIIBTPAINE IBHBIME YUCICHHBIMUA METOJIAMHE € JJOCTATOYHO MSTKUMU YCJIAOBUSMI
YCTOHINBOCTH, YTOOBI 06ECIEINTh SKOHOMUYHOCTD PACIeTOB Ha COBPEMEHHBIX CyIIEPKOM-
IbIOTEPAx IPH BBICOKOH 3 dDEKTUBHOCTH pacrapasle/IiBaHUsL.

st mocTuKenust 9TOI eIl KIACCHYECKas MOJIEJb MHOrO(A3HOr0 TedeHHst Caabo-
CKIMAEMOIl XKHJIKOCTU B IIOPHUCTOI cpejie Obliia MoAudUIMpOBaHa [0 aHAJIOIHU ¢ KBA3¥-
ra30/[MHAMIYECKON CHCTEMOI ypaBHEHHIH, TaKzKe ObLIa IIPOBE/ICHA MUIepOOIH3aIs 0Ly~
YeHHON cucTeMbl. B pesysbrare ypaBHeHHe HEPa3PbIBHOCTH (a3bl HPUOGPeso JIOMOJIHY-
TeJIbHBIE “WIEHBI C MAJILIMA [APAMETPAMI — DEryJIsiPU3aTOp U BTOPYIO IPOM3BOIHYIO 1O
BpeMenn. COOTBETCTBYIOIAsI TPEXCJIONHAsL SIBHASI PA3HOCTHAsI CXeMa MMeeT BTOPOIl 110-
PSIJIOK AIIIPOKCUMAIMH 110 BPEMEHH U 110 IPOCTPAHCTBY. MoJIe/Ib yUUTHIBACT BO3MOKHBIE
HCTOYHUKH TeIlIa, PABUTAIIMOHHBIE ¥ KAIMJIJISIPHBIE CHJIBL.

[TpeioxKeHHbIii 11071X0/] BepruhUIMPOBAH € TIOMOIIBIO Psijia TECTOBBIX PACYeTOB, YHC-
JIEHHO HOJIy4YeHbl (PU3UIECKH KOPPEKTHBIE Pe3ysbTaThbl. JJOCTUIHYTO BBICOKOE YCKODEHHE
BBIYHC/IEHAI Ha THOPUJIHBIX KJIaCTepax, BKIIOYAIONINX MHOTOs/IEPHBIE I[EHTPAJIbHBIE IIPO-
neccopsl (CPU) u rpaduueckue yckopureaun (GPU).
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