Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

SVM таянч векторлар усулида оптималлаштириш масаласи учун ядро функциясини қўлланилиши

Сайфуллаев Ш.Б.

Рузибоев О.Б.

Шоазизова М.Э.

Муҳаммад ал-Хоразмий авлодлари

  • № 2 (8) 2019

Страницы: 

9

 – 

13

Язык: узбекский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

Мақолада оптималлаштириш масаласини таянч вектор машинаси (SVM) усули ѐрдамида ечиш назарияси келтирилган бўлиб, оптималлаштириш масаласи учун ядро функциясини қўлланлиши, Grid search алгоритмлари таҳлили амалга оширилган.

The article describes the methodology and software based on the algorithms of computational algorithms for solving the problem of classifying definitions of medical symbols. The problem of classifying patients with headaches, which is often found in neurological diseases in software diagnostics, was studied. At the first stage of the program, an informational field is formed, and at the second stage, the problem of classification is solved. For headache disorders, a class of information was developed that is specific to the diagnostic class in order to determine the significance of the chosen diagnosis and the decisive principle of determining which object is similar to the unknown.

Список использованных источников

  1. Boser, B. E., I. Guyon, and V. Vapnik (1992). A training algorithm for optimal margin classifiers . In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages. 144 -152. ACM Press 1992.
  2. V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  3. Kernel Methods for Pattern Analysis, John Shawe – Taylor and Nello Cristianini, Cambridge University Press, 2 0 0 4.
  4. D.Bickson, D. Dolev and E. Yom-Tov, Solving Large Scale Kernel Ridge Regression using A Gaussian Belief Propagation Solverin NIPS Workshop on E±cient Machine Learning, Canada, 2007
  5. J. C. Platt, ―Fast training of support vector machines using sequential minimal optimization,‖Advances in Kernel Methods: Support Vector Learning, pp. 185–208, 1999.
  6. Chang, C.-C. and C. J. Lin (2001). LIBSVM: a library for support vector machines.
  7. Camastra, F. & M. Filippone (2007). SVM-based time series prediction with nonlinear dynamics methods. Knowledge-Based Intelligent Information and Eng. Systems, LNCS, Springer, Vol. 4694, 2007, pp 300-307.

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS