Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Суъний нейрон тармоклари асосида миокард инфарктни таснифлаш ва жойлашув урнини аниклаш

Муминов Б.Б.

Насимов Р.Х.

Хужаяров И.Ш.

Гадойбоева Н.С.

Вестник ТУИТ

  • № 4 (52) 2019

Страницы: 

13

 – 

29

Язык: узбекский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

В этой статье была разработана архитектура CNN на основе электрокардиограммы (ЭКГ) для определения и классификации местоположения инфаркта миокарда. База данных была разработана на основе системы ЭКГ с 12 отведениями. База данных, состоящая из 10 классов инфаркта миокарда и исходных данных от здорового человека, была обучена архитектуре CNN, и результат достиг 98,47%.

Ушбу маколада электрокардиограммага (ЭКГ) асосан миокард инфарктни жойлашув урнини аникловчи ва таснифловчи CNN(convolution neural network, CNN) архитектураси ишлаб чикилди. 12-каналли ЭКГ тизимига асосан маълумотлар базаси лойих,алаштирилди. CNN архитектурасида миокард инфарктнинг 10 синфи ва согаом одамнинг дастлабки маълумотларидан ташкил топган база укитилди ва олинган натижа 98.47% га етди.

In this paper, has been developed CNN architecture based on electrocardiogram (ECG)to determine and classify the location of myocardial infarction. Some approaches for detecting and classifying of myocardial infarction based on CNN networks by global researchers have discussed. The methods and means of detection of myocardial infarction have been studied. Deep learning techniques for classifying myocardial infarction were analyzed, including CNN. Current study focused primarily on the classification of myocardial infarction based on ECG images. The database was designed based on the 12-lead ECG system. A database consisting of 10 classes of myocardial infarction and baseline data from a healthy person was trained in CNN architecture. Scientists’ work on automatic detection and classification of myocardial infarction has been studied and the results compared. Eleven classes created based on *.mat files for MI classification and each *.mat file consisted of amount of different data. For each class, network accuracy was calculated separately and the average of the results determined. The results were compared based on the table with the results of other researchers taken from their works. The specifics of each of taken results were also discussed.The results of the article are summarized and future work is planned. The result obtained by the proposed method was 98.47%.

Список использованных источников

  1. Min Wan, Cato Laurencin, Xiaojin Yu. ‘Encyclopedia of biomedical engineering', Elsevier publisher, vol.1, 2019
  2. Smith SW, Zvosec DL, Henry TD, Sharkey SW, editors. The ECG in acute MI: an evidence-based manual of reperfusion therapy. 1st ed. Philadelphia: Lippincott, Williams and Wilkins; pp. 98-112, 2002.
  3. Le L.,Yefeng Z., Gustavo C., Lin Y., "Advances in Computer Vision and Pattern Recognition,Precision Medicine, High Performance and Large-Scale Datasets”, Springer International Publishing Switzerland,pp. 512-517, 2017
  4. H. Pereira, N. Daimiwal, "Analysis of features for myocardial infarction and healthy patients based on wavelet", Proc. 2016 Conf. Adv. Signal Process., pp. 164-169, Jun. 2016.
  5. S. Banerjee, M. Mitra, "Application of cross wavelet transform for ECG pattern analysis and classification", IEEE Trans. Instrum. Meas., vol. 63, no. 2, pp. 326-333, Feb. 2014
  6. Qibin Zhao, and Liqing Zhan, “ECG Feature Extraction and Classification Using Wavelet Transform and Support Vector Machines,” International Conference on Neural Networks and Brain, ICNN&B '05, vol. 2, pp. 10891092, 2005.
  7. Geoffrey H. T., Jeffrey Z., Francesca N. D., and Rahul C. D., ’’Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery”, arXiv:1807.02569v1 [cs.CV] 6Jul 2018
  8. Rodriguez R., Mexicano A., Bila J., Cervantes S., Ponce R., "Feature Extraction of Electrocardiogram Signals by Applying Adaptive Threshold and Principal Component Analysis",Journal of Applied Research and Technolo- gy,Volume 13, Issue 2, pp 261-269, 2015
  9. Jen K.-K., Hwang Y.-R., "ECG feature extraction and classification using cepstrum and neural networks", Journal of Medical and Biological Engineering, 28(1): pp 31-37, 2008
  10. Dohare, A. K., Kumar, V., & Kumar, R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Applied Soft Computing, 64, pp. 138-147, 2018
  11. Mair J, Smidt J, Lechleitner P, Dienstl F, Puschendorf B.,"A decision tree for the early diagnosis of acute myocardial infarction in nontraumatic chest pain patients at hospital admission", Chest Journal, 108(6):1502-1509, 1995
  12. Devika M. G., Gopakumar C., Aneesh R.P.,Gayathri R.N., "Myocardial infarction detection using hybrid BSS method", 2016 International Conference on Communication Systems and Networks, pp.21-23, 2016
  13. Muhammad A., Ijaz A.M., Fayyaz A.A., "Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier", Journal of Medical Systems,Volume 36, Issue 1, pp 279-289, 2012
  14. JavadKojuri, Reza Boostani, PooyanDehghani, Farzad Nowroozipour, Nasrin Saki, "Prediction of acute myocardial infarction with artificial neural networks in patients with nondiagnostic electrocardiogram", Journal of Cardiovascular Disease Research, Vol 6, Issue 2, pp 51-59,2015
  15. Zewdie G, Xiong M. Fully automated myocardial infarction using ordinary differential equations. Proc. 8th int. Conf. Bioinforma. Comput. Biol. BICOB. p.p. 17-22, 2016
  16. Chang P-C, Lin Y-CW J-J. Myocardial infarction classification using polynomial aproximation and principle component analysis. Natl Digit Libr Thesis Diss Taiwan, p.p. 76-81, 2011
  17. S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ECG classification by 1-D convolutional neural networks’IEEE Transactions on Biomedical Engineering,vol.63,no.3,pp.664-675, 2016
  18. X. Zhai and C. Tin, “Automated ECG Classification Using DualHeartbeat Coupling Based on Convolutional Neural Network,”IEEE Access, vol. 6, pp. 27465-27472, 2018.
  19. Vishali A., Gagandeep, "A review:deep learning technique for image classification", ACCENTS Transactions on Image Processing and Computer Vision, Vol 4(11), pp. 465-472, 2017
  20. Xin Jia, "Image recognition method based on deep learning", 29th Chinese Control And Decision Conference (CCDC), pp. 212-217, 2017
  21. https://medium.com/@arthur_ouaknine/review-of-deep-learning- algorithms-for-image-semantic-segmentation-509a600f7b57
  22. Emad O, Yassine IA, Fahmy AS "Automatic localization of the left ventricle in cardiac MRI images using deep learning". In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society, pp 683-686, 2015
  23. Chen H, Zheng Y, Park J-H, Heng PA, Zhou SK Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. In: Proceedings of international conference medical image computing and computer assisted intervention, pp 574-586, 2016
  24. Luis B.-C., Sergio M.-R., Alicia G.-C. Jose L.R.-A., "Review Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners", Applied. Science. pp 401-407, 2019
  25. Haya A., "Convolutional Neural Network Application in Biomedical Signals", Journal of Computer Science and Information Technology, Vol. 6, No. 2, pp. 45-59, 2018
  26. Nagarajan G., Ramakrishnan S.,Thomas M. D., "Deep Learning on 1-D Biosignals: a Taxonomy-based Survey", CC BY-NC-ND 4.0 • Yearb Med Inform , 27(01): pp. 098-109, 2018
  27. Acharya U, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci, pp. 415-416, 2017
  28. Lui, H. W., & Chow, K. L. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Informatics in Medicine Unlocked, 13, pages 26-33, 2018.
  29. LinpengJin and Jun Dong Normal Versus Abnormal ECG Classification by the Aid of Deep Learning. pp. 295-316, 2018.
  30. Wenhan L., Qijun H., Sheng Ch., Hao W., Jin H. Multiple-feature-branch CNN for myocardialinfarction diagnosis using electrocardiogram. Biomedical Signal Processing and Control 45, pp. 22-32, 2018
  31. U.B. Baloglu, M. Talo, O. Yildirim , R. S. Tan , U.R. AcharyaClassifica- tion of Myocardial Infarction with Multi-Lead ECG Signals and Deep CNN,pp. 228-232, 2017
  32. Nils Strodthoff, Claas Strodthoff, “Detecting and interpreting myocardial infarction using fully convolutional neural networks”, arXiv:1806.07385v2, 5, 2019
  33. T. Reasat and C. Shahnaz, “Detection of inferior myocardial infarctionusing shallow convolutional neural networks,” IEEE Region 10 Humanitarian Technology Conference,pp. 112-116, 2017.
  34. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet : components of a new research resource for complex physiologic signals. Circulation 2000;101:e215-2
  35. Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG- Signaldatenbank CARDIODAT der PTBuber das Internet. Biomed Tech, 1995
  36. Sedghamiz. H, "Matlab Implementation of Pan Tompkins ECG QRS detector.", 2014.
  37. Pan.J, Tompkins. W.J,"A Real-Time QRS Detection Algorithm" IEEE Transactions on Biomedical Engineering, Vol. BME-32, no. 3, 1985
  38. X. Zhai and C. Tin, “Automated ECG Classification Using DualHeartbeat Coupling Based on Convolutional Neural Network,”IEEE Access, vol. 6, pp. 27465-27472, 2018.
  39. https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091 dc42

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS