Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Применение вейвлет-методов и алгоритмов в задачах цифровой обработки кардиосигналов

Зайнидинов Х.Н.

Зайнутдинова М.Б.

Азимова У.А.

Кучкаров М.А.

Вестник ТУИТ

  • № 3 (47) 2018

Страницы: 

83

 – 

95

Язык: русский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

В статье рассмотрены применение вейвлет-преобразований и алгоритмов в задачах цифровой обработки кардиосигналов в ряде медицинских приложений благодаря хорошей приспособленности к анализу нестационарных сигналов (то есть таких, чьи статистические характеристики изменяются во времени). Так как электрокардиограмма является нестационарным сигналом, вейвлетные методы могут использоваться для распознавания и обнаружения ключевых диагностических признаков.

Маколада стационар булмаган сигналларни таклил килиш учун яхши мослашувчан (статистик курсаткичлари ва тутиши билан узгариши) булган кардиосигналларга ракамли ишлов беришда вейвлетли-узгартириш ва алгоритмлар куриб чикилган. Электрокардиограмма сигнали стационар булмаганлиги сабабли, вейвлет-узгартириш, асосий сигналларни ва асосий диагностик курсаткичларни топиш ва таниш учун ишлатилиши мумкин.

The article discusses the use of wavelet transforms and algorithms in the digital processing of cardiosignals in a number of medical applications due to their good adaptability to the analysis of non-stationary signals (that is, those whose statistical characteristics change with time). Since an electrocardiogram is a transient signal, wavelet methods can be used to recognize and detect key diagnostic features.In real-time systems for digital signal processing, it is important that mathematical operations are performed quickly, and the time required to execute commands must be known precisely and in advance. For this, both the program and the hardware must be very effective. In digital signal processors, the most important mathematical operation and the core of all digital signal processing algorithms is multiplication, followed by summation. Fast execution of the multiplication operation followed by summation is very important for implementing real-time digital filters, signal processing, matrix multiplication, and graphic image manipulation. Therefore, all this requires the need to improve methods, algorithms and signal processing programs that determine the quality and performance of digital systems.The technique is based on the transformation of the heart rate to simple harmonic oscillations (fast Fourier transform, autoregressive analysis) with different frequencies. In this case, the sequence of heartbeats is converted into a power spectrum of fluctuations of the duration of the RR intervals, which are a sequence of frequencies characterizing HRV. Most often, the area bounded by the spectral power curve corresponding to a certain defined frequency range, that is, the power within a limited frequency range, is estimated. When spectral analysis of HRV according to the degree of change in the indices of the spectrum of the rhythm can be judged on the level of adaptive capacity of the organism.

Список использованных источников

  1. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в MATLAB / Смоленцев Н. К. - М. : ДМК Пресс, 2008. - 448 с.
  2. H.N.Zaynidinov, M.B.Zaynutdinova, E.Sh.Nazirova. Methods of reconstructing signals based on multivariate spline. European journal of computer science and information technology, Vol.3, No.2, pp.52-59, May 2015, ISSN 2054-0957(Print), ISSN 2054-0965 (On-line).
  3. H.N.Zaynidinov,M.B.Zaynutdinova,S.U.Makhmudjanov. Multiprocessor parallel pipelined computation structure on the basis of bicubic splines. WCIS- 2016 “Ninth World Conference on Intelligent Systems for Industrial Automation”. PROCEEDINGS, Tashkent, Uzbekistan, October25-27, 2016, p.166-170
  4. H.N.Zaynidinov, M.B.Zaynutdinova, I.Yusupov.Two-dimensional piecewisepolynomial haar's bases and their application to problems in digital signal processing. WCIS-2016 “Ninth World Conference on Intelligent Systems for Industrial Automation”. PROCEEDINGS, Tashkent, Uzbekistan, October25-27, 2016, p.371-376
  5. X.N.Zayniddinov, I.Yusupov. Piecewise-polynomial basis functions for computing problems in biomedical signal processing. ABSTRACTS of the Uzbek - Israel International Scientific Conference “CONTEMPORARY PROBLEMS IN MATHEMATICS AND PHYSICS” Tashkent 2017 October 6-10, 127 p.
  6. Хан М. Г. Быстрый анализ ЭКГ / М. Г. Хан. - М. :Би-ном, 2003. - 230 с.
  7. Хэмптон Дж. Атлас ЭКГ: 150 клинических ситуаций / Дж. Хэмптон. - М. : Медицинская литература, 2007. - 320 с.
  8. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в MATLAB / Смоленцев Н. К. - М. : ДМК Пресс, 2008. - 448 с.
  9. Алексеев К. А. Очерк «Вокруг CWT» [Электронний ресурс] / Алексеев К.А. - Электрон.дан. - Режим доступу:http://matlab.exponenta.ru/wavelet/book3/in-dex.php, вшьний. - Заг. зекрану.
  10. Martinez J. P. A wavelet-based ECG delineator: evaluation on standard databases / Martinez J. P., Almeida R., Laguna P. / IEEE Transactions on Biomedical Engineering. -2004. - Vol. 51. - P. 570-581
  11. Vitec M. A wavelet-based ECG delineation in Multilead ECG signals: Evaluation on the CSE Database / Vitec M., Hrubes J., Kozumplik J. // IFMBE Proceedings. - 2009. - Vol.25. - P. 177-180
  12. Sahambi J. S. Using wavelet transform for ECG characterization / Sahambi J. S., Tandon S. B. // IEEE Engineering in Medicine and Biology. - 2000. - Vol. 9. - P. 1532-1546
  13. Chouhan V. S. Delineation of QRS-complex, P and T-wa- ve in 12-lead ECG / Chouhan V S., Mehta S. S., LingayatN. S. // IJCSNS International Journal of Computer Science and Network Security. - 2008. - Vol. 8. - P. 185-190
  14. De Chazazl P. Automatic measurement of the QRS onset and offset in individual ECG leads / De Chazazl P., Celler B. // IEEE Engineering in Medicine and Biology Society. - 1996. - Vol. 4. - P. 1399-1403
  15. Laguna P. Automatic detection of wave boundaries in multilead ECG signals / Laguna P., Jane R., Caminal P. // Computers and Biomedical Research. - 1994. - Vol. 27. - P. 45-60.
  16. Dohoto D. L. De-Noising by soft-thresholding / Do- hoto D. L. // IEEE Transactions on Information Theory. - 2005. - Vol. 41. - P. 613-627.
  17. Dohoto D. L. Ideal spatial adaptation via wavelet shrinkage / Dohoto D. L., Johnstone I. M. // Biometrika. - 2004. - Vol. 81. - P. 425-455.

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS