Построение распознающих операторов, основанных на пороговых функциях расстояния
- № 1(19) 2019
Страницы:
67
–
77
Язык: русский
Аннотация
В данной статье рассматривается задача распознавания образов, заданных в пространстве взаимосвязанных признаков. Для решения данной задачи предлагается новый подход к построению модели распознающих операторов, учитывающих взаимосвязанность заданных признаков. Основная идея предлагаемого подхода заключается в формировании независимых подмножеств взаимосвязанных признаков и выделении предпочтительной модели зависимости для каждого подмножества сильносвязанных признаков. Целью данной статьи является разработка модели распознающих операторов, основанных на радиальных функциях, с использованием метода группового учета аргументов. В научном плане результаты данной работы в совокупности представляют собой новое решение научной задачи, связанной с вопросами повышения надежности распознающих алгоритмов, основанных на радиальных функциях. Практическая значимость результатов заключается в том, что разработанные алгоритмы и программы могут быть применены в медицинской и технической диагностике, геологическом прогнозировании, биометрической идентификации и других областях, где предусмотрено решение задачи классификации объектов, заданных в пространстве признаков большой размерности. Для проверки работоспособности предложенной модели распознающих алгоритмов проведены экспериментальные исследования при решении задачи идентификации личности по изображению подписи.
This article discusses the problem of pattern recognition, given in the space of interrelated features. To solve this problem, a new approach to constructing a model of recognizing operators is proposed, taking into account the interconnectedness of the given features. In this case, the construction of a model of recognition operators was carried out on the basis of radial functions. The main idea of the proposed approach is to form independent subsets of interrelated features and highlight the preferred dependency model for each subset of tightly coupled features. A distinctive feature of the proposed model of algorithms is to determine a suitable set of twodimensional distance functions when building a model of discriminating operators. The purpose of this article is to develop a model of recognizing operators based on radial functions using the group-based argument method. The subject of the research is the development of a model of recognizing operators based on two-dimensional distance functions. Scientifically, the results of this work in the aggregate represent a new solution to a scientific problem related to the issues of increasing the reliability of recognition algorithms based on radial functions. The practical significance of the results lies in the fact that the developed algorithms and programs can be applied in medical and technical diagnostics, geological forecasting, biometric identification and other areas where it is possible to solve the problem of classifying objects defined in a space of large dimensionality. To test the performance of the proposed model of recognition algorithms, experimental studies were carried out in solving a number of problems. The analysis of the obtained results shows that the considered recognition operators are used in cases where there is some dependence between the attributes of objects belonging to the same class. With a weak expression of this dependence, the classical model of recognition operators is used. The main advantage of the proposed recognition operators is the improvement in accuracy and a significant reduction in the amount of computational operations in recognition of unknown objects, which allows them to be used in the construction of recognition systems operating in real time.
This article discusses the problem of pattern recognition, given in the space of interrelated features. To solve this problem, a new approach to constructing a model of recognizing operators is proposed, taking into account the interconnectedness of the given features. In this case, the construction of a model of recognition operators was carried out on the basis of radial functions. The main idea of the proposed approach is to form independent subsets of interrelated features and highlight the preferred dependency model for each subset of tightly coupled features. A distinctive feature of the proposed model of algorithms is to determine a suitable set of twodimensional distance functions when building a model of discriminating operators. The purpose of this article is to develop a model of recognizing operators based on radial functions using the group-based argument method. The subject of the research is the development of a model of recognizing operators based on two-dimensional distance functions. Scientifically, the results of this work in the aggregate represent a new solution to a scientific problem related to the issues of increasing the reliability of recognition algorithms based on radial functions. The practical significance of the results lies in the fact that the developed algorithms and programs can be applied in medical and technical diagnostics, geological forecasting, biometric identification and other areas where it is possible to solve the problem of classifying objects defined in a space of large dimensionality. To test the performance of the proposed model of recognition algorithms, experimental studies were carried out in solving a number of problems. The analysis of the obtained results shows that the considered recognition operators are used in cases where there is some dependence between the attributes of objects belonging to the same class. With a weak expression of this dependence, the classical model of recognition operators is used. The main advantage of the proposed recognition operators is the improvement in accuracy and a significant reduction in the amount of computational operations in recognition of unknown objects, which allows them to be used in the construction of recognition systems operating in real time.