Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Метод отображения виртуальных сетей в физической сети с учетом связности маршрутизаторов

Амирсаидов У.Б.

Вестник ТУИТ

  • № 1 (49) 2019

Страницы: 

40

 – 

50

Язык: русский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

Рассматривается задача отображения виртуальных сетей в физической сети, предлагается метод отображения виртуальных сетей с учетом связности маршрутизаторов, проводится вычислительный эксперимент и сравнительный анализ эффективности методов отображения виртуальных сетей, показывается эффективность предложенного метода по сравнению существующими методами отображения виртуальных сетей.

Виртуал тармокларни физик тармокда тасвирлаш усуллари курилган, маршрутизаторларни богаанганлигини инобатга олиб виртуал тармокларни тасвирлаш усули таклиф этилган, виртуал тармокларни тасвирлаш усулларини самарадорлиги аниклаш ва киёслаш учун хисоблаш эксперименти утказилган, виртуал тармокларни тасвирлаш учун таклиф этилган усулни бошка усуллардан самарадорлиги курсатилган.

The issues of network virtualization, the effective mapping (embedding) of virtual network elements on top of the elements of a common physical network and the dynamic distribution of network resources are considered.Embedding a virtual network is associated with the distribution of virtual resources in both nodes and channels. Two subtasks are considered: virtual node mapping (Virtual Node Mapping VNoM), when virtual nodes should be distributed on physical nodes, and virtual channel mapping (Virtual Link Mapping VLiM), when virtual channels connecting virtual nodes should be mapped to paths that connect corresponding nodes in the physical network. The choice of a specific physical router for embedding a virtual router is based on the following criteria:selection of the lowest-cost embedding option from all possible options, selection of a physical router with the highest throughput at the time of embedding and selection of a physical router with the least sufficient throughput at the moment of embedding.In all methods, the second stage of embedding, i.e. the creation of a virtual channel is implemented on the basis of the criterion «minimum length of the virtual channel». To determine the virtual channel of the minimum length, the Dijkstra algorithm is used.A method for mapping virtual networks is proposed taking into account the connectedness of routers. The connectivity of the router is equal to the number of routers connected to this router. The basic rule for embedding this method is that the virtual router with the highest connectivity is embedded in the physical router with the highest connectivity. Next, the virtual routers connected to the virtual router with the highest connectivity are embedded in the physical routers connected to the physical router with the highest connectivity. This embedding rule is aimed at organizing a virtual channel consisting of only one physical channel.The effectiveness of the methods of embedding virtual networks is estimated using the coefficients of embedding virtual networks and the effective use of resources of the physical network.In order to assess the effectiveness of the methods of embedding virtual networks, computational experiments were conducted using the developed programs. The initial data for computational experiments are the topology and parameters of the elements of the physical network, the topology and parameters of the elements of virtual networks and the method of embedding virtual networks. The output for computational experiments are the results of the mapping of virtual networks, the number of embedded virtual networks and the amount of physical network resources used in embedding virtual networks.

Список использованных источников

  1. W. Stallings Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud. Copyright © 2016 by Pearson Education, Inc. р.696.
  2. Рекомендация МСЭ-TY.3001(2011 г.). Будущие сети: целевые установки и цели проектирования. Женева 2012, 26 с.
  3. Рекомендация МСЭ-Т Y.3011 (2012 г.). Структура виртуализации сети для будущих сетей. Женева, 2017 г., 28 с.
  4. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network provisioning across multiple substrate networks. ” Computer Networks, vol. 55, no. 4, pp. 1011 - 1023, 2011, special Issue on Architectures And Protocols for the Future Internet. https://pdfs.semanticscholar.org/e130/437238cf7f6cea4 4acfacde000157d605d53.pdf .
  5. J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer. “Energy efficient virtual network embedding,” Communications Letters, IEEE, vol. 16, no. 5, pp. 756 -759, may 2012. https://www.researchgate.net/publication/236158057_Energy_Efficient_Virtual_Network_Embedding.
  6. J. Lischka and H. Karl. “A virtual network mapping algorithm based on subgraph isomorphism detection. ”in Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and architectures. New York, USA, Aug. 2009, pp. 81-88. https://dl.acm.org/citation.cfm?id=1592648.1592662.

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS