Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Mathematical model and numerical algorithms to analyze gas filtration process in a porous medium

Равшанов Н.

Назирова Е.Ш.

Аминов С.М.

Вестник ТУИТ

  • № 3 (51) 2019

Страницы: 

47

 – 

67

Язык: английский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

В статье рассматривается задача, связанная с исследованием процесса фильтрации газа в пористой среде с помощью математической модели объекта, описывающая нелинейное уравнение в частных производных и соответствующих им краевых и внутренних условий. В работе для выбора стратегии решения вышеуказанной задачи проанализированы научно-исследовательские работы, связанные с математическим моделированием и их численными методами решения, выполненные за последние 5-10 лет. В статье приведены основные этапы построения математической модели процесса фильтрации газа в пористых средах с учетом изменения гидродинамических параметров объекта исследования. Для решения вышеуказанной задачи, использованы численные методы: локально-одномерные схемы и схемы продольно-поперечных направлений. Получены системы одномерных уравнений в конечных разностях, аппроксимирующие краевую задачу теории фильтрации на семействах прямых линий. Для решения процесса нелинейной фильтрации газа в пористой среде были проверены некоторые способы построения итерационного процесса. В статье для исследования откликов основных параметров процесса приведены серия вычислительных экспериментов на компьютерах, анализов, связанных с ними.

The paper deals with the problem of gas filtration process in a porous medium using a mathematical model of an object; the model is described by a nonlinear partial differential equation and the corresponding boundary and internal conditions. To select a strategy for solving the above-mentioned problem, scientific-research studies over the last 5-10 years have been analyzed related to mathematical modeling and numerical methods of solution. The paper presents the main stages in construction of mathematical model of the process of gas filtration in porous media, taking into account the changes in hydrodynamic parameters of the object of study. To solve the above problem, the following numerical methods have been used: local-one-dimensional schemes and longitudinal-transverse direction schemes. Systems of one-dimensional equations in finite differences have been obtained; they approximate the boundary value problem of the theory of filtration on straight lines. To solve the problem of nonlinear gas filtration in a porous medium, several methods of constructing an iterative process have been checked. To study the responses of the principal parameters of the process, a series of computational experiments on a computer, their analyses and conclusions are given in the paper.

Список использованных источников

  1. Monteiro P.J., Rycroft Ch.H., Barenblatt G.I. Mathematical model of fluid and gas flow in nanoporous media // Proceedings of the National Academy of Sciences of the United States of America. – 2012. – vol.109, № 50. -Pp. 20309-20313.
  2. Boyer F., Lapuerta C., Minjeaud S., Piar B., Quintard M. Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows Transport in Porous Media. - 2010. - vol. 82, № 3. - Рp. 463-483. doi:10.1007/s11242-009-9408-z.
  3. Barenblatt G.I., Patzek T.W., Silin D.B. Mathematical model of nonequilibrium effects in water-oil displacement // Society of Petroleum Engineers Journal. – 2003. – vol. 8, № 4. – Рp. 409-416.
  4.  Ali Q. Raeini, Martin J. Blunt, Branko Bijeljic. Modeling two-phase flow in porous media at the pore scale using the volume-of-fluid method// Journal of Computational Physics.-USA, 2012. - vol. 231, № 17. - Pp.5653-5668. doi>10.1016/j.jcp.2012.04.011.
  5. Chraibi M., Zaleski S., Franco F. Modeling the solution gas drive process in heavy oils // Reports of the Institute of Mines. – SPb, 2008. – V.174. – Pp. 36-40.
  6. Atkinson C., Isangulov R. Mathematical model of an oil and gas field development process // European Journal of Applied Mathematics. – UK,2010. – vol. 21. – Issue 3. – Pp. 205-227.
  7. Lopuh N. B., Pyanylo Ya. D. Numerical Analysis of models with fractional derivatives for gas filtration in porous media // Coupled Systems and Multiscale Dynamics, June 2014. – vol. 2, № 1. - рp. 15-19 (5).
  8. Vabishchevich P.N., Vasilyev V.I., Vasilyeva M.V., Nikiforov D.Ya. Numerical solution of one inverse filtering problem // Uchenye zapiski Kazan University. Series: Physics and Mathematics. - Kazan, 2015. - V.157, No. 4. - Pp. 79–89.
  9. Batrakov N.R., Absalyamov R.Sh., Galimzyanov R.R., Zakiev I.D., Radaev A.V., Sabirzyanov A.N., Mukhamadiev A.A. Investigation of the process of displacing oil from a saturated reservoir with supercritical carbon dioxide // Bulletin of Kazan Technological University. - Kazan,2013. - Vol. 16, No. 10. - Pp. 245–247.
  10. Trapeznikova M.A., Churbanova N.G., Lupa A.A. Simulation of threephase fluid flow in a porous medium, taking into account thermal effects/Mathematica Montisnigri. - 2015. -vol. 33. -pp. 105-115.
  11. Bogachev K. Yu. An effective solution to the problem of filtering a viscous compressible multiphase multicomponent mixture on parallel computers:Abstract of a dis…. PhD in Physics and Mathematics - Moscow,2011. - 38 p.
  12. Akhmetzyanov A.V. Computational aspects of controlling the filtration of fluids and gases in porous media // Automation and Remote Control. -Moscow, 2008. - № 1. - Pp. 3-15.
  13. Ahmed-Zaki D.J. On a problem of two-phase filtration of a mixture in a porous medium with allowance for thermal effects // Scientific papers of NIPI Neftegaz. - Baku, 2010. - № 3. - Pp. 29-33.
  14. Demyanov A.Yu., Dinariev O.Yu., Ivanov E.N. Simulation of water transfer from a fine-dispersed gas phase in porous media /Engineering Physics Journal. - Minsk, 2012. - Vol. 85, No. 6. - Pp. 1145-1154.
  15. Lozhkin M.G. Model of relative phase permeability to displace gas with condensate and water and displace oil with water and gas /Exposure oil gas. - Naberezhnye Chelny, 2015. - № 1(40). - pp.39-41.
  16. Bogomolov V.A., Bulgakova O.R., Plokhotnikov D.S., Plokhotnikov S.P.Mathematical modeling of three-phase filtration in layered strata, taking into account the jet scheme /Engineering Physics Journal. - 2011. - Vol.84, No. 5. - Pp. 907-911.
  17. Algazin S.D. Numerical study of single-phase gas filtration in a porous medium // Applied Mechanics and Technical Physics. - Novosibirsk,2011. - Vol.52, № 4 (308). - Pp. 136-146.
  18. Borzykh V.E., Semenov B.V. Mathematical modeling of the flow of multicomponent gases through a porous structure // Bulletin of Tyumen State University. - Tyumen, 2009. - № 6. - Pp. 192-197.
  19. Lombard J-M., Longeron D., Kalagdjian F. Influence of connate water and condensate saturation on inertial effects in gas/condensate reservoirs.SPEJ. – vol. 5, № 3. – 2000. - Pp. 301-308.
  20. Robert Mott, Andrew Cable, Mike Spearing. A new method of measuring relative permeabilities for calculating gas-condensate well deliverability, SPE 56484, 1999.
  21. Jensen R.P., Peerce D.S., Modeling of Sand Production with Darcy’s Flow Coupled with Discrete Elements, OSTI, 2000.
  22. Mazurek K.A., Chalaturnyk R.J., Rajaratnam N., Scott J.D., Transport of Fine Sand from a Wellbore, Journal of Canadian Petroleum Technology,2002.Vol. 41, N.4. Pp.53-61.
  23. Papamichos E., Vardoulakis I. Sand erosion with a porosity diffusion law, Computers and Geotechnics, 2005. Vol.32, N.1. Pp.47–58.
  24. Suman G.O.Jr., Ellis R.C., Snyder R.E. Sand Control Handbook, Second Edition, Gulf Publishing Company, Houston, Texas, 1991.
  25. Vardoulakis I., Stavropoulou M., Papanastasiou P. Hydromechanical aspects of the sand production problem, Transport in Porous Media, 1996.Vol.22, N.2. Pp.225–244.
  26. Yarlong W., Carl C.C., Enhanced Oil Production Owing to Sand Flow in Conventional and Heavy-Oil Reservoirs, SPE Reservoir Evaluation & Engineering (SPE), October 2001: 366-374.
  27. Zhamankulova F.E. Modified hydrodynamic model of sand removal from the reservoir // DAN RUz, 2004. №5. C.38-41.
  28. Zhamankulova F.E., Makhmudov Zh.M. Mathematical modeling of sand removal processes from the reservoir Proceedings of KNIIRP Samarkand division of AS RUz. Samarkand, 2003. Vol.2. Pp.87-93.
  29. Khuzhayorov B.Kh., Davidenko M.A., Shodmonov I.E. Filtration of a homogeneous fluid in the elastic-plastic mode, taking into account the rock destruction // Uzbek journal "Problems of Mechanics", 1997. №3.Pp.40-43.
  30. Khuzhayorov B.Kh., Zhamankulova F.E. Hydraulic substantiation of sand removal from oil producing wells // Uzbek magazine “Oil and gas”,2000. №4. Pp.20-23.
  31. Khuzhayorov B.Kh. On the equations of filtration in the elastic-plastic regime with sand removal // DAN RUz, 1997. №4. Pp.22-24.
  32. Khuzhayorov B.Kh., Shodmonov I.E. Elastic-plastic filtration taking into account the fracture of the reservoir // Uzbek journal "Problems of Mechanics",1998. №3. Pp.24-29.
  33. Khuzhayorov B.Kh., Shodmonov I.E., Kholiyarov E.Ch., Zakirov A.A.Elastoplastic filtration of fluid in unstable formations // Engineering Physics Journal, 2003. V.76, №6. Pp.123-128.
  34. Khuzhayorov B.Kh., Elastic-plastic filtration taking into consideration the destruction of the bed, 3-rd Europeаn Fluid Mechanics Conference.1997. Book of abstracts. Gёttingen. Germany. 15-18 Sept. 1997. 181p.
  35. Gruesbeck C., Collins R.E., Entrainment and deposition of fine particles in porous media, Society of Petroleum Engineers Journal, December,1982. Pp. 847-856.
  36. Wennberg K.E., Batrouni G.G., Hansen A., Horsrud P. Band formation in deposition of fines in porous media, Transport in Porous Media, 1996.Vol. 25, No3. Pp. 247-273.
  37. Corapcioglu M.Y. Deposition of solids in drilling fluids on borehole walls, Water resources research, 1988. Vol.24, No11. Pp.1893-1900.
  38. Bond W.J., Wierenga P.J. Immobile water during solute transport in unsaturated sand columns, Water resources research, 1990. Vol.26, No10.Pp.2475-2481.
  39. Ravshanov N., Kurbonov N.M. Computer simulation of fluid filtration in porous media // Bulletin of the South Ural State University. Series:Computational Mathematics and Computer Science. - Chelyabinsk,2015. - Vol. 4, No. 2. Pp. 89–106.
  40. Ravshanov N., Yuldashev B.E., Kurbonov N.M. Computer simulation of oil and gas production processes. - Tashkent: Tafakkur, Monograph,2015. - 178 p.

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS