Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Kvant algoritmlarni optimallashtirishning samarali yechish usullari

Тоиров Ш.А.

Вестник ТУИТ

  • № 4 (48) 2018

Страницы: 

83

 – 

89

Язык: узбекский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

В данной статье рассматриваются принципы решения языка квантовых вычислений, его оператор и немецкий алгоритм, используемый при решении квантовых алгоритмов. Учтены основные принципы квантовых процессов, физические и алгоритмические интерпретации. Эти процессы описывают классификацию алгоритмов системы, которая используется для поиска эффективных решений глобальных задач оптимизации и управления непредвиденными ситуациями.

Ushbu maqolada kvant algoritmlarni yechishda qo‘llaniladigan qcl (quantum computation language), uning operatorari va Deutsch algorimini orqali yechish prinsiplari keltirib o‘tilgan. Kvant jarayonlarning asosiy tamoyillari, fizikaviy va algoritmik talqinlari hisobga olingan. Ushbu jarayonlar tizimni tahlil qilishda global optimallash muammolariga samarali yechimlarni qidirishda va kutilmagan holatlarni oqilona boshqarishda qo‘llaniladigan algoritmning tasniflari keltirilib o‘tilgan.

This article deals with the principles of solving quantum computing language, its operator and the German algorithm used in solving quantum algorithms. The basic principles of quantum processes, physical and algorithmic interpretations are taken into account. These processes describe the system’s algorithm classification, which is used to search effective solutions to global optimization problems and to manage the unexpected situations.The search for a solution of the Global (Multi-phase Multiple) optimization problem is typical for system analysis. The uncertainty of information and the adoption of optimal solutions in risky conditions and the management of complex systems have been advancing for years. In recent years, the solution to this problem has been successful with new ideas of intellectual computing.In order to find a solution with the help of quantum algorithm, quantum operators are used in the same sequence as changing the initial state to the initial superposition. In quantum programming, the last operation (operation) is impossible,because this is not permitted. Instead, the results are added to the result of splitting out the output log (ф) into two modules. In other words, the XOR (exception) action is performed on them. This action, of course, is reversible: it is enough to use it again and the memory returns to its original state. Unlike the classic analogue, the algorithm of the cavern can be executed in different classes of universal elements, depending on the basis of the calculation used. The cube-algorithm cell describes the evolution of some unitary operator, which corresponds to the quantum process.

Список использованных источников

  1. B. Omer, Structured Quantum Programming, Ph. D. Thesis, Technical University of Vienna (2003); http://tph.tuwien.ac.at/~oemer/
  2. А. Г. Грозин, Квантовый компьютер для чайников, Новосибирск(2004).
  3. J. van der Hoeven, GNU TEXmacs, http://www.texmacs.org/
  4. A.G. Grozin, TEXmacs interfaces to Maxima, MuPAD and REDUCE, Proc. 5 Int. workshop on Computer algebra and its applications to physics, Dubna, JINR E5,11-2001-279; cs.SC/0107036.
  5. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computer, Proc. Roy. Soc. A 439 (1992) 553.
  6. P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proc. 35 Annual Symposium on Foundations of Computer Science, IEEE Press (1994).
  7. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Computing 26 (1997) 1484.
  8. R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Comm. ACM 21 (2) (1978) 120.
  9. C.H. Bennett, G. Brassard, and N.M. Mermin, Quantum cryptography without Bell's theorem, Phys. Rev. Lett. 68 (1992) 557.
  10. S.Wiesner, Conjugate coding, написано в 1970, опубликовано в SIGACT News 15 (1) (1983) 78.C.H. Bennett, G. Brassard, C. Cr'epeau, R. Jozsa, A. Peres, and W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (1993) 1895.

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS