Imitation models of the railway organization for railway Transport flows
- № 1 (3) 2018
Страницы:
14
–
18
Аннотация
Ушбу мақолада темир йўл хабарлашувини бутун логистик занжир бўйлаб юкларни оптимал бошқаруви масалаларини ечиш, йўл харитасидаги максимал даражадан ошмайдиган ёки минимал даражадан камайиб кетмайдиган аниқ бир юкни
юклаш ишларини режасини шакллантириш ва амалга ошириш жараёнларини ташкил этиш масалалари кўриб чиқилган. Бундан ташқари мақолада темир йўл тармоғида максимал оқимни топиш масаласи хар қандай транспорт тармоғининг максимал оқими унинг минимал ўтказиш хусусияти тенг эканлиги асослаб берилган. Агар оқим максимал бўлса, унда
тармоқнинг ўтказиш хусусияти оқимнинг кучига тенг деган тасаввур пайдо бўлиши ва бу теорема Форд-Фалкерсон алгоритми қўлланиши билан исботланиши мақолада келтирилган.
The article is devoted to the questions of solving the problem of optimization of cargo traffic management in the railway transport throughout the logistics chain, organizing the formation and implementation of cargo loading plans that do not allow exceeding the maximum and reduce the minimum levels of availability of a particular cargo on the destination road. And also the article justifies the solution of the problem of finding the maximum flow in the railway network, it is noted that in any transport network the maximum flow is equal to the minimum capacity. If the flow is maximal, then there is a section whose transmission capacity is equal to the cardinality of the flow and this theorem is proved by applying the Ford-Falkerson algorithm.
The article is devoted to the questions of solving the problem of optimization of cargo traffic management in the railway transport throughout the logistics chain, organizing the formation and implementation of cargo loading plans that do not allow exceeding the maximum and reduce the minimum levels of availability of a particular cargo on the destination road. And also the article justifies the solution of the problem of finding the maximum flow in the railway network, it is noted that in any transport network the maximum flow is equal to the minimum capacity. If the flow is maximal, then there is a section whose transmission capacity is equal to the cardinality of the flow and this theorem is proved by applying the Ford-Falkerson algorithm.