Билимлар базасида учрайдиган тузилмавий хоталикларни бартараф Этиш ёндашувлари
- № 2 (4) 2018
Страницы:
105
–
112
Язык: узбекский
Аннотация
Мақолада продукцион тизимларни шакллантириш ҳамда интеллектуал хусусиятли электрон ахборот ресурсларда продукцион моделига асосланган билимларни акс эттириш ҳамда билимлар базасида учрайдиган тузилмавий хоталикларни бартараф этиш ѐндашувлари ва алгоритми баѐни келтирилган. Бу ѐндашув ҳамда алгоритмлар ѐрдамида продукцион билимлар базасидаги қоидалар сонининг ортиб кетиши сабаб вужудга келувчи салбий ҳолатларни бартараф этиш асосланган. Юзага келадиган қоидалардаги тузулмавий хатоликларни бартараф этиш графлар ѐрдамида тавсифланган бўлиб, таклиф этилган ѐндашув ва алгоритмлар ахборот ресурсларидаги билимларнинг ишончлилигини оширишга хизмат қилувчи верификацилашда қўлланилиши мумкинлиги келтирилган.
The article deals with the representation of knowledge based on product models in electronic information resources that have intellectual properties, as well as approaches and algorithms for eliminating structural errors found in the knowledge base. The increase in the number of rules in the base of product knowledge with the help of this approach and algorithms is based on elimination of negative reasons. Elimination of structural errors in the emerging rules is characterized with the help of graphs, the proposed approaches and algorithms can be used in verification, which helps to increase the reliability of knowledge in information resources.
The article deals with the representation of knowledge based on product models in electronic information resources that have intellectual properties, as well as approaches and algorithms for eliminating structural errors found in the knowledge base. The increase in the number of rules in the base of product knowledge with the help of this approach and algorithms is based on elimination of negative reasons. Elimination of structural errors in the emerging rules is characterized with the help of graphs, the proposed approaches and algorithms can be used in verification, which helps to increase the reliability of knowledge in information resources.