Перейти к содержимому
UzScite
  • НСИ
    • Новости События
    • Методическая информация
    • Нормативные документы
  • Каталог журналов
  • Указатель авторов
  • Список организаций

Application of wavelets for forming discrete selections of continuous signals

Zaynidinov H.N.

Zaynutdinova M.B.

Yusupov I.

Химическая технология. Контроль и управление

  • № 4-5 2018

Страницы: 

186

 – 

190

Язык: английский

Открыть файл статьи
Открыть страницу статьи в Интернет

Аннотация

The paper deals with theory questions, as well as examples of calculations based on modern basis functions with compact carriers for solving problems of forming discrete samples of continuous signals with finite energy. The method is based on the law of asymptotic attenuation of the values of the wavelet coefficient moduli to zero as n → ∞, and the speed of their motion to zero depends on the choice of the wavelet. This method can be defined as the summation of the octave energy components of the coefficients of fast wavelet transformations with the binary law of decreasing sampling steps.

Список использованных источников

  1. Blatter K. Wavelet analysis. Fundamentals of the theory. M.: The technosphere. 2006. 272 p.
  2. Ahmed N, Rao K. Orthogonal transformations in the processing of digital signals. Trans. with English. M.: Communication. 1980. 248 p.
  3. Dremin IM, Ivanov OV, Nechitailo VA Wavelets and their use. Uspekhi Fizicheskikh Nauk. T.171. 2001. № 5. p.465-501.
  4.  Novikov A.K. Polyspectral analysis. - SPb.: Central Research Institute of Krylov, 2000, -162 p.
  5. Svinyin S.F. Theory and methods of forming samples of signals with infinite spectra. -Spb.: Nauka, 2016. -71с.
  6. Hakimjon Zayniddinov, Madhusudan Singh, Dhananjay Singh Polynomial Splines for Digital Signal and Systems (Monograph in English). LAMBERT Academic publishing, Germany, 2016 year, 208 p.
  7. Zainidinov H.N. Methods and means of signal processing in piecewise polynomial bases. Monograph. Tashkent - "Fan technology" - 2014, 190 p.
  8.  Zaynidinov H.N., Dannanjay Singh, Hoon Jae Lee. Piecewise-quadratic Harmut basis function and their applications to problems in digital signal processing. International Journal of Communication Systems, John Wiley & Sons, Ltd., DOI: 10.1002 / dac.1093, Jan. 2010. London, SCI-E. www.interscience.wiley.com
  9. S. Malla. "Wavelets in signal processing".Moscow. "Peace". 2005

Список всех публикаций, цитирующих данную статью

Copyright © 2025 UzScite | E-LINE PRESS