Application of a convolutional neural networks for images recognition
- № 2(92) 2020
Страницы:
69
–
81
Язык: английский
Аннотация
В задачах распознавания изображений используются различные подходы, когда изображение зашумлено и имеется малая выборка наблюдений. В статье рассматриваются непараметрические методы распознавания и методы, основанные на сверточных нейронных сетях. Этот тип нейронных сетей позволяет сворачивать изображения, проводить субдискретизацию необходимое число раз. Причем скорость распознавания изображения достаточно высокая, а размерность данных понижается использованием сверточных слоев. Одним из важнейших элементов применения свёрточных нейронных сетей является обучение.
Тасвирни таниб олиш муаммоларида, расм шовқинли бўлганда ва кичик кузатишлар намунаси мавжуд бўлганда, турли хил ёндашувлар қўлланилади. Мақолада параметрик бўлмаган аниқлаш усуллари ва конвулсион нейрон тармоқларига асосланган усуллар муҳокама қилинади. Ушбу турдаги нейрон тармоқ сизга тасвирларни сиқиб чиқаришга, зарур бўлганда схемаларни қисқартиришга имкон беради. Бундан ташқари, расмни аниқлаш тезлиги жуда юқори ва конвулсион қатламлардан фойдаланган ҳолда маълумотлар ҳажми камаяди. Конвулсион нейрон тармоқларни қўллашнинг энг муҳим элементларидан бири бу машғулотдир.
In the problems of image recognition, various approaches used when the image is noisy and there is a small sample of observations. The paper discusses nonparametric recognition methods and methods based on deep neural networks. This neural network allows you to collapse images, to perform downsampling as many times as necessary. Moreover, the image recognition speed is quite high, and the data dimension is reduced by using convolutional layers. One of the most important elements of the application of convolutional neural networks is training. The article gives the results of work on the application of convolutional neural networks. The work was carried out in several stages. In the first stage was carried out the modeling of the convolutional neural network and was developed its architecture. In the second stage, the neural network was trained. The third phase produced Python software. The software health check and video processing speed were then performed.
Тасвирни таниб олиш муаммоларида, расм шовқинли бўлганда ва кичик кузатишлар намунаси мавжуд бўлганда, турли хил ёндашувлар қўлланилади. Мақолада параметрик бўлмаган аниқлаш усуллари ва конвулсион нейрон тармоқларига асосланган усуллар муҳокама қилинади. Ушбу турдаги нейрон тармоқ сизга тасвирларни сиқиб чиқаришга, зарур бўлганда схемаларни қисқартиришга имкон беради. Бундан ташқари, расмни аниқлаш тезлиги жуда юқори ва конвулсион қатламлардан фойдаланган ҳолда маълумотлар ҳажми камаяди. Конвулсион нейрон тармоқларни қўллашнинг энг муҳим элементларидан бири бу машғулотдир.
In the problems of image recognition, various approaches used when the image is noisy and there is a small sample of observations. The paper discusses nonparametric recognition methods and methods based on deep neural networks. This neural network allows you to collapse images, to perform downsampling as many times as necessary. Moreover, the image recognition speed is quite high, and the data dimension is reduced by using convolutional layers. One of the most important elements of the application of convolutional neural networks is training. The article gives the results of work on the application of convolutional neural networks. The work was carried out in several stages. In the first stage was carried out the modeling of the convolutional neural network and was developed its architecture. In the second stage, the neural network was trained. The third phase produced Python software. The software health check and video processing speed were then performed.